Growing Support Vector Classifiers with controlled complexity

dc.contributor.authorParrado Hernández, E.
dc.contributor.authorMora Jiménez, Inma
dc.contributor.authorArenas García, J.
dc.contributor.authorFigueiras Vidal, Aníbal R
dc.contributor.authorNavia Vázquez, Angel
dc.date.accessioned2009-07-29T14:43:25Z
dc.date.available2009-07-29T14:43:25Z
dc.date.issued2009-07-29T14:43:25Z
dc.description.abstractSemiparametric Support Vector Machines have shown to present advantages with respect to nonparametric approaches, in the sense that generalization capability is further improved and the size of the machines is always under control. We propose here an incremental procedure for Growing Support Vector Classifiers, which serves to avoid an a priori architecture estimation or the application of a pruning mechanism after SVM training. The proposed growing approach also opens up new possibilities for dealing with multi-kernel machines, automatic selection of hyperparameters, and fast classification methods. The performance of the proposed algorithm and its extensions is evaluated using several benchmark problems.es
dc.description.departamentoTeoría de la Señal y Comunicaciones
dc.identifier.doi10.1016/S0031-3203(02)00351-5es
dc.identifier.urihttp://hdl.handle.net/10115/2591
dc.language.isoenes
dc.rightsAtribución-NoComercial-SinDerivadas 3.0 España*
dc.rights.accessRightsinfo:eu-repo/semantics/openAccesses
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/3.0/es/*
dc.subjectTelecomunicacioneses
dc.subject.unesco1203.17 Informáticaes
dc.titleGrowing Support Vector Classifiers with controlled complexityes
dc.typeinfo:eu-repo/semantics/articlees

Archivos

Bloque original

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
Growing Support vector classifiers.pdf
Tamaño:
169.8 KB
Formato:
Adobe Portable Document Format

Bloque de licencias

Mostrando 1 - 1 de 1
No hay miniatura disponible
Nombre:
license.txt
Tamaño:
3.1 KB
Formato:
Item-specific license agreed upon to submission
Descripción: