On higher order ladder operators for classical orthogonal polynomials

dc.contributor.authorMarriaga, Misael E.
dc.contributor.authorMartínez, Javier
dc.date.accessioned2025-05-12T09:29:45Z
dc.date.available2025-05-12T09:29:45Z
dc.date.issued2025-05-12
dc.description.abstractWe analyze the algebraic structure of higher order ladder operators for classical orthogonal polynomials (Hermite, Laguerre, Jacobi, Bessel) in terms of their moment functionals and two first order ladder operators, $J_n^+$ and $J_n^-$. We study operational expressions for these ladder operators in terms of certain integro-differential operators.
dc.identifier.citationMarriaga, M.E., Martínez, J. On higher order ladder operators for classical orthogonal polynomials. Comp. Appl. Math. 44, 276 (2025). https://doi.org/10.1007/s40314-025-03245-4
dc.identifier.doi10.1007/s40314-025-03245-4
dc.identifier.urihttps://hdl.handle.net/10115/85677
dc.language.isoen
dc.publisherSpringer
dc.rights.accessRightsinfo:eu-repo/semantics/embargoedAccess
dc.subjectClassical orthogonal polynomials
dc.subjectLadder operators
dc.titleOn higher order ladder operators for classical orthogonal polynomials
dc.typeArticle

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Name:
Orthogonal_polynomials_with_Lie_Algebra.pdf
Size:
390.94 KB
Format:
Adobe Portable Document Format

License bundle

Now showing 1 - 1 of 1
Loading...
Name:
license.txt
Size:
2.96 KB
Format:
Item-specific license agreed upon to submission
Description: