On higher order ladder operators for classical orthogonal polynomials
dc.contributor.author | Marriaga, Misael E. | |
dc.contributor.author | Martínez, Javier | |
dc.date.accessioned | 2025-05-12T09:29:45Z | |
dc.date.available | 2025-05-12T09:29:45Z | |
dc.date.issued | 2025-05-12 | |
dc.description.abstract | We analyze the algebraic structure of higher order ladder operators for classical orthogonal polynomials (Hermite, Laguerre, Jacobi, Bessel) in terms of their moment functionals and two first order ladder operators, $J_n^+$ and $J_n^-$. We study operational expressions for these ladder operators in terms of certain integro-differential operators. | |
dc.identifier.citation | Marriaga, M.E., Martínez, J. On higher order ladder operators for classical orthogonal polynomials. Comp. Appl. Math. 44, 276 (2025). https://doi.org/10.1007/s40314-025-03245-4 | |
dc.identifier.doi | 10.1007/s40314-025-03245-4 | |
dc.identifier.uri | https://hdl.handle.net/10115/85677 | |
dc.language.iso | en | |
dc.publisher | Springer | |
dc.rights.accessRights | info:eu-repo/semantics/embargoedAccess | |
dc.subject | Classical orthogonal polynomials | |
dc.subject | Ladder operators | |
dc.title | On higher order ladder operators for classical orthogonal polynomials | |
dc.type | Article |
Archivos
Bloque original
1 - 1 de 1
No hay miniatura disponible
- Nombre:
- Orthogonal_polynomials_with_Lie_Algebra.pdf
- Tamaño:
- 390.94 KB
- Formato:
- Adobe Portable Document Format