Bi-functionalized mesostructured silicas as reversed-phase/strong anion-exchange sorbents. Application to extraction of polyphenols prior to their quantitation by UHPLC with ion-trap mass spectrometry detection
Fecha
2019-02-06
Título de la revista
ISSN de la revista
Título del volumen
Editor
SpringerLink
Resumen
Hybrid mesostructured silicas with wormhole-like pore structure were synthesized and bi-functionalized with n-octyl (C8) and quaternary ammonium (NR4+) groups to obtain new sorbent materials for dispersive solid-phase extraction (dSPE) of polyphenols. Due to their nature of being both a reversed-phase and a strong anion-exchanger, the materials display mixed mode
retention mechanism. During the synthesis, the functionalization conditions were varied to obtain materials with different functionalization degree. The resulting materials (denoted as HMS-RPC8-SAX-1, HMS-RPC8-SAX-2 and HMS-RPC8-SAX-3) show high surface area, wormhole-like framework and controlled pore size. They were evaluated for multicomponent extraction of 22 polyphenols, including phenolic acids, flavonoids and stilbenes, from spiked juice samples. The sample extracts were analyzed by ultra-high performance liquid chromatography coupled to ion-trap tandem mass spectrometry. The adsorption capability, the amount of sorbent, the eluent and the elution volume were optimized. Best performance was achieved by using HMS-RPC8-SAX-2, which is the material with the highest fraction of NR4+ groups. This material has a large extraction capability and provides high recovery values of the target analytes (70–101%) as a result of its hydrophobic and anion-exchange interactions. The detection limits for polyphenols in juice range from 1 to 560 ng mL−1.
Descripción
Authors thank financial support from the Comunidad of Madrid and European funding from FEDER program (Project S2013/ABI-3028, AVANSECAL).
Palabras clave
Citación
Casado, N., Pérez-Quintanilla, D., Morante-Zarcero, S. et al. Bi-functionalized mesostructured silicas as reversed-phase/strong anion-exchange sorbents. Application to extraction of polyphenols prior to their quantitation by UHPLC with ion-trap mass spectrometry detection. Microchim Acta 186, 164 (2019). https://doi.org/10.1007/s00604-019-3267-2