Integrating multiple land cover maps through a multi-criteria analysis to improve agricultural monitoring in Africa

dc.contributor.authorPérez-Hoyos, Ana
dc.contributor.authorUdías, Angel
dc.contributor.authorRembold, Francois
dc.date.accessioned2024-12-19T12:09:37Z
dc.date.available2024-12-19T12:09:37Z
dc.date.issued2020
dc.description.abstractMonitoring agricultural land cover is highly relevant for global early warning systems such as ASAP (Anomaly hot Spots of Agricultural Production), because it represents the basis for detecting production deficits in food security assessment. Given the significant inconsistencies among existing land cover datasets, there is a need to obtain a more accurate representation of the spatial distribution and extent of agricultural area in Africa. In this research, we explore a fusion approach that combines the strength of individual datasets and minimises their limitations. Specifically, a semi-automatic method is developed, relying on multi-criteria analysis (MCA) complemented with manual fine-tuning using the best-rated datasets, to generate two hybrid and static agricultural masks – one for cropland and another for grassland. Following a comprehensive selection of land cover maps, each dataset is evaluated at country level according to five criteria: timeliness, spatial resolution, comparison with FAO statistics, accuracy assessment and expert evaluation. A sensitivity analysis is performed, based on an evaluation of the impact of weight settings on the resulting land cover. The proposed methodology is capable of improving agricultural characterisation in Africa. As a result, two static masks at 250 m spatial resolution for the nominal year 2016 are provided
dc.identifier.citationA. Pérez-Hoyos, A. Udías, F. Rembold, Integrating multiple land cover maps through a multi-criteria analysis to improve agricultural monitoring in Africa, International Journal of Applied Earth Observation and Geoinformation, Volume 88, 2020, 102064
dc.identifier.doihttps://doi.org/10.1016/j.jag.2020.102064
dc.identifier.issn1569-8432
dc.identifier.urihttps://hdl.handle.net/10115/44137
dc.language.isoen
dc.publisherElsevier
dc.rightsAttribution 4.0 Internationalen
dc.rights.accessRightsinfo:eu-repo/semantics/openAccess
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/
dc.subjectMulti-criteria analysis
dc.subjectData fusion
dc.subjectLand cover/land use
dc.subjectAgriculture mask
dc.subjectAgriculture monitoring
dc.titleIntegrating multiple land cover maps through a multi-criteria analysis to improve agricultural monitoring in Africa
dc.typeArticle

Archivos

Bloque original

Mostrando 1 - 1 de 1
No hay miniatura disponible
Nombre:
PerezHoyos_etal.2020_baja.pdf
Tamaño:
914.42 KB
Formato:
Adobe Portable Document Format

Bloque de licencias

Mostrando 1 - 1 de 1
No hay miniatura disponible
Nombre:
license.txt
Tamaño:
2.96 KB
Formato:
Item-specific license agreed upon to submission
Descripción: