Convolutional Learning on Directed Acyclic Graphs

dc.contributor.authorRey, Samuel
dc.contributor.authorAjorlou, Hamed
dc.contributor.authorMateos, Gonzalo
dc.date.accessioned2024-07-11T07:11:07Z
dc.date.available2024-07-11T07:11:07Z
dc.date.issued2024
dc.description.abstractWe develop a novel convolutional architecture tailored for learning from data defined over directed acyclic graphs (DAGs). DAGs can be used to model causal relationships among variables, but their nilpotent adjacency matrices pose unique challenges towards developing DAG signal processing and machine learning tools. To address this limitation, we harness recent advances offering alternative definitions of causal shifts and convolutions for signals on DAGs. We develop a novel convolutional graph neural network that integrates learnable DAG filters to account for the partial ordering induced by the graph topology, thus providing valuable inductive bias to learn effective representations of DAG-supported data. We discuss the salient advantages and potential limitations of the proposed DAG convolutional network (DCN) and evaluate its performance on two learning tasks using synthetic data: network diffusion estimation and source identification. DCN compares favorably relative to several baselines, showcasing its promising potential.es
dc.identifier.urihttps://hdl.handle.net/10115/37573
dc.language.isoenges
dc.rightsCC0 1.0 UNIVERSAL
dc.rights.accessRightsinfo:eu-repo/semantics/openAccesses
dc.rights.urihttps://creativecommons.org/publicdomain/zero/1.0/
dc.titleConvolutional Learning on Directed Acyclic Graphses
dc.typeinfo:eu-repo/semantics/lecturees

Archivos

Bloque original

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
2024_GSPW_DAG_Conv_Networks.pdf
Tamaño:
1.27 MB
Formato:
Adobe Portable Document Format
Descripción:

Bloque de licencias

Mostrando 1 - 1 de 1
No hay miniatura disponible
Nombre:
license.txt
Tamaño:
2.67 KB
Formato:
Item-specific license agreed upon to submission
Descripción: