A Subject-Specific Kinematic Model to Predict Human Motion in Exoskeleton-Assisted Gait

Resumen

The relative motion between human and exoskeleton is a crucial factor that has remarkable consequences on the efficiency, reliability and safety of human-robot interaction. Unfortunately, its quantitative assessment has been largely overlooked in the literature. Here, we present a methodology that allows predicting the motion of the human joints from the knowledge of the angular motion of the exoskeleton frame. Our method combines a subject-specific skeletal model with a kinematic model of a lower limb exoskeleton (H2, Technaid), imposing specific kinematic constraints between them. To calibrate the model and validate its ability to predict the relative motion in a subject-specific way, we performed experiments on seven healthy subjects during treadmill walking tasks. We demonstrate a prediction accuracy lower than 3.5° globally, and around 1.5° at the hip level, which represent an improvement up to 66% compared to the traditional approach assuming no relative motion between the user and the exoskeleton

Descripción

Esta publicación ha sido realizada en los proyectos Europeos de investigación EU FP7 BioMot (Smart Wearable Robots with Bioinspired Sensory-Motor Skills), Ref.: 611695, y el proyecto EU H2020 EUROBENCH European Robotic framework for bipedal locomotion benchmarking, Ref.: 779963. Colaboración entre instituciones de México y España. CONTRIBUCIÓN (según taxonomía CReDIT): Conpcetualization, Methodology, Project administration, Resources, Supervision, Writting: review&editing. -------------------------------------- Indicios de calidad: - A nivel del medio de difusión Revista con revisión por pares doble ciego indexada en JCR y Scupus, en el segundo cuartil (Q2) primer tercil (T1) en las categorías de Computer Science, Artificial Intelligence, Robótica y Neurociencias con factor de impacto 3.000 en el año de publicación del artículo (2018) - A nivel de aportación. El artículo ha tenido mucho impacto en las principales redes de interacción científica: Mendeley (138 accesos) y ResearchGate (2.227 accesos). Los índices de impacto son los siguientes: 25 citas en Scopus situándose en el percentil 69 de artículos similares (Scopus), 28 en WoS y 34 en GoogleScholar. Los índices de citación normalizadas son los siguientes: 0.94 (FWCI, Scoups) y 1.03 (FCR, Dimensions).

Citación

Torricelli D, Cortés C, Lete N, Bertelsen Á, Gonzalez-Vargas JE, Del-Ama AJ, Dimbwadyo I, Moreno JC, Florez J, Pons JL. A Subject-Specific Kinematic Model to Predict Human Motion in Exoskeleton-Assisted Gait. Front Neurorobot. 2018 Apr 27;12:18
license logo
Excepto si se señala otra cosa, la licencia del ítem se describe como Atribución 4.0 Internacional