An Interpretable Machine Learning Method for the Detection of Schizophrenia Using EEG Signals

dc.contributor.authorVázquez, Manuel A.
dc.contributor.authorMaghsoudi, Arash
dc.contributor.authorMariño, Inés P.
dc.date.accessioned2024-11-12T12:11:25Z
dc.date.available2024-11-12T12:11:25Z
dc.date.issued2021-05-28
dc.descriptionWe acknowledge support by the Agencia Estatal de Investigación of Spain (CAIMAN, reference TEC2017-86921-C2-1-R and CLARA, reference RTI2018-099655-B-I00) and by the grant Science of the 074-02-2018-330.es
dc.description.abstractIn this work we propose a machine learning (ML) method to aid in the diagnosis of schizophrenia using electroencephalograms (EEGs) as input data. The computational algorithm not only yields a proposal of diagnostic but, even more importantly, it provides additional information that admits clinical interpretation. It is based on an ML model called random forest that operates on connectivity metrics extracted from the EEG signals. Specifically, we use measures of generalized partial directed coherence (GPDC) and direct directed transfer function (dDTF) to construct the input features to the ML model. The latter allows the identification of the most performance-wise relevant features which, in turn, provide some insights about EEG signals and frequency bands that are associated with schizophrenia. Our preliminary results on real data show that signals associated with the occipital region seem to play a significant role in the diagnosis of the disease. Moreover, although every frequency band might yield useful information for the diagnosis, the beta and theta (frequency) bands provide features that are ultimately more relevant for the ML classifier that we have implemented.es
dc.identifier.citationVázquez MA, Maghsoudi A and Mariño IP (2021) An Interpretable Machine Learning Method for the Detection of Schizophrenia Using EEG Signals. Front. Syst. Neurosci. 15:652662. doi: 10.3389/fnsys.2021.652662es
dc.identifier.doi10.3389/fnsys.2021.652662es
dc.identifier.issn1662-5137 (online)
dc.identifier.urihttps://hdl.handle.net/10115/41483
dc.language.isoenges
dc.publisherFrontiers Mediaes
dc.rightsAtribución 4.0 Internacional*
dc.rights.accessRightsinfo:eu-repo/semantics/openAccesses
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/*
dc.subjectelectroencephalographyes
dc.subjectmachine learninges
dc.subjectrandom forestes
dc.subjectschizophreniaes
dc.subjectconnectivityes
dc.subjectdirect directed transfer functiones
dc.subjectgeneralized partial directed coherencees
dc.titleAn Interpretable Machine Learning Method for the Detection of Schizophrenia Using EEG Signalses
dc.typeinfo:eu-repo/semantics/articlees

Archivos

Bloque original

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
fnsys-15-652662.pdf
Tamaño:
2.41 MB
Formato:
Adobe Portable Document Format
Descripción:
Artículo principal

Bloque de licencias

Mostrando 1 - 1 de 1
No hay miniatura disponible
Nombre:
license.txt
Tamaño:
2.67 KB
Formato:
Item-specific license agreed upon to submission
Descripción: