Coincidence theorems for finite topological spaces

dc.contributor.authorChocano , Pedro J.
dc.date.accessioned2025-07-07T08:17:32Z
dc.date.available2025-07-07T08:17:32Z
dc.date.issued2026-05-26
dc.description.abstractIn this work, we adapt the definition of the Vietoris map to the setting of finite topological spaces and establish several coincidence theorems.From these theorems, we derive a Lefschetz fixed point theorem for multivalued maps, which extends recent results in the field.Finally, we illustrate an application of this theory in approximating discrete dynamical systems.
dc.identifier.citationPedro J. Chocano, Manuel A. Morón & Francisco R. Ruiz del Portal, Coincidence theorems for finite topological spaces. Topol. Method Nonl. An., 65(1): 219-263, 2025
dc.identifier.doi10.12775/TMNA.2024.028
dc.identifier.issn1230-3429
dc.identifier.urihttps://hdl.handle.net/10115/91457
dc.identifier.urlhttps://projecteuclid.org/journalArticle/Download?urlId=10.12775%2FTMNA.2024.028
dc.language.isoen
dc.publisherJuliusz Schauder University Center for Nonlinear Studies ; Nicolaus Copernicus University in Toruń
dc.rights.accessRightsinfo:eu-repo/semantics/closedAccess
dc.subjectAlexandroff spaces
dc.subjectapproximation of polyhedra
dc.subjectdynamical systems
dc.subjectFinite T0-spaces
dc.subjectFixed points
dc.subjectmultivalued maps
dc.subjectposets
dc.titleCoincidence theorems for finite topological spaces
dc.typeArticle

Archivos

Bloque original

Mostrando 1 - 1 de 1
No hay miniatura disponible
Nombre:
LefschetzFiniteSpacesMejor.pdf
Tamaño:
975.42 KB
Formato:
Adobe Portable Document Format