Bernstein-Bézier Galerkin-Characteristics Finite Element Method for Convection-Diffusion Problems
Archivos
Fecha
2022
Título de la revista
ISSN de la revista
Título del volumen
Editor
Springer
Resumen
A class of Bernstein-Bézier basis based high-order finite element methods is developed
for the Galerkin-characteristics solution of convection-diffusion problems. The Galerkincharacteristics formulation is derived using a semi-Lagrangian discretization of the total
derivative in the considered problems. The spatial discretization is performed using the finite
element method on unstructured meshes. The Lagrangian interpretation in this approach
greatly reduces the time truncation errors in the Eulerian methods. To achieve high-order
accuracy in the Galerkin-characteristics solver, the semi-Lagrangian method requires highorder interpolating procedures. In the present work, this step is carried out using the BernsteinBézier basis functions to evaluate the solution at the departure points. Triangular BernsteinBézier patches are constructed in a simple and inherent manner over finite elements along the
characteristics. An efficient preconditioned conjugate gradient solver is used for the linear
systems of algebraic equations. Several numerical examples including advection-diffusion
equations with known analytical solutions and the viscous Burgers problem are considered to
illustrate the accuracy, robustness and performance of the proposed approach. The computed
results support our expectations for a stable and highly accurate Bernstein-Bézier Galerkincharacteristics finite element method for convection-diffusion problems.
Descripción
Acknowledgements
Financial support provided by the project of Consejo Superior de Investigaciones Científicas (CSIC) under the contract M MTM2017-89423-P is gratefully acknowledged.
Funding
Open Access funding provided thanks to the CRUE-CSIC agreement with Springer Nature.
Citación
El-Amrani, M., El-Kacimi, A., Khouya, B. et al. Bernstein-Bézier Galerkin-Characteristics Finite Element Method for Convection-Diffusion Problems. J Sci Comput 92, 58 (2022). https://doi.org/10.1007/s10915-022-01888-7
Colecciones
Excepto si se señala otra cosa, la licencia del ítem se describe como Atribución 4.0 Internacional