Outlier Detection in Non-stationary Processes

dc.contributor.authorAtil, Lynda
dc.contributor.authorFellag, Hocine
dc.contributor.authorGarcía Sipols, Ana Elizabeth
dc.contributor.authorSantos-Martin, M Teresa
dc.date.accessioned2025-09-22T13:51:14Z
dc.date.available2025-09-22T13:51:14Z
dc.date.issued2025-07-01
dc.date.updated2025-09-15T11:16:28Z
dc.descriptionOpen access funding provided by FEDER European Funds and the Junta de Castilla y León under the Research and Innovation Strategy for Smart Specialization (RIS3) of Castilla y León 2021-2027.
dc.description.abstractThis paper presents a novel non-parametric procedure for detecting outliers in unit root models. The method utilizes order statistics functions of time series, making it more robust and adaptable to a wider range of scenarios without requiring distribution assumptions. The proposed method is evaluated using numerical and Monte Carlo simulations, showing high power in detecting additive outliers while maintaining a low false alarm rate. The method is also tested in scenarios with single or multiple outliers, and a study of real carbon dioxide emissions data from Venezuela confirms its effectiveness in detecting additive outliers in unit root models. The proposed procedure is shown to perform well in various distributions, which is an advantage over existing techniques. Overall, this new method offers significant advantages over current techniques and has the potential for wider application in outlier detection problems.
dc.identifier.citationAtil, L., Fellag, H., Sipols, A.E. et al. Outlier Detection in Non-stationary Processes. Comput Econ (2025). https://doi.org/10.1007/s10614-025-11036-6
dc.identifier.doihttps://doi.org/10.1007/s10614-025-11036-6
dc.identifier.issn0927-7099 (print)
dc.identifier.issn1572-9974 (online)
dc.identifier.urihttps://hdl.handle.net/10115/102437
dc.language.isoen
dc.publisherSpringer
dc.rightsAttribution 4.0 Internationalen
dc.rights.accessRightsinfo:eu-repo/semantics/openAccess
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/
dc.subjectAdditive outliers
dc.subjectOrder statistics
dc.subjectOutlier detection
dc.subjectUnit root
dc.titleOutlier Detection in Non-stationary Processes
dc.typeArticle

Archivos

Bloque original

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
outlierdetection.pdf
Tamaño:
4.62 MB
Formato:
Adobe Portable Document Format