Universal and automatic elbow detection for learning the effective number of components in model selection problems

dc.contributor.authorMorgado, Eduardo
dc.contributor.authorMartino, Luca
dc.contributor.authorSan Millán-Castillo, Roberto
dc.date.accessioned2024-01-23T08:58:41Z
dc.date.available2024-01-23T08:58:41Z
dc.date.issued2023
dc.description.abstractWe design a Universal Automatic Elbow Detector (UAED) for deciding the effective number of components in model selection problems. The relationship with the information criteria widely employed in the literature is also discussed. The proposed UAED does not require the knowledge of a likelihood function and can be easily applied in diverse applications, such as regression and classification, feature and/or order selection, clustering, and dimension reduction. Several experiments involving synthetic and real data show the advantages of the proposed scheme with benchmark techniques in the literature.es
dc.identifier.citationMorgado, E., Martino, L., & San Millán-Castillo, R. (2023). Universal and automatic elbow detection for learning the effective number of components in model selection problems. Digital Signal Processing, 104103.es
dc.identifier.doi10.1016/j.dsp.2023.104103es
dc.identifier.issn0165-1684
dc.identifier.urihttps://hdl.handle.net/10115/28705
dc.language.isoenges
dc.publisherElsevieres
dc.rights.accessRightsinfo:eu-repo/semantics/embargoedAccesses
dc.subjectModel selectiones
dc.subjectOrder selectiones
dc.subjectAutomatic elbow detectiones
dc.subjectVariable selectiones
dc.subjectClusteringes
dc.titleUniversal and automatic elbow detection for learning the effective number of components in model selection problemses
dc.typeinfo:eu-repo/semantics/articlees

Archivos

Bloque original

Mostrando 1 - 1 de 1
No hay miniatura disponible
Nombre:
UAED_2023.pdf
Tamaño:
1.38 MB
Formato:
Adobe Portable Document Format
Descripción:

Bloque de licencias

Mostrando 1 - 1 de 1
No hay miniatura disponible
Nombre:
license.txt
Tamaño:
2.67 KB
Formato:
Item-specific license agreed upon to submission
Descripción: