Universal and automatic elbow detection for learning the effective number of components in model selection problems
dc.contributor.author | Morgado, Eduardo | |
dc.contributor.author | Martino, Luca | |
dc.contributor.author | San Millán-Castillo, Roberto | |
dc.date.accessioned | 2024-01-23T08:58:41Z | |
dc.date.available | 2024-01-23T08:58:41Z | |
dc.date.issued | 2023 | |
dc.description.abstract | We design a Universal Automatic Elbow Detector (UAED) for deciding the effective number of components in model selection problems. The relationship with the information criteria widely employed in the literature is also discussed. The proposed UAED does not require the knowledge of a likelihood function and can be easily applied in diverse applications, such as regression and classification, feature and/or order selection, clustering, and dimension reduction. Several experiments involving synthetic and real data show the advantages of the proposed scheme with benchmark techniques in the literature. | es |
dc.identifier.citation | Morgado, E., Martino, L., & San Millán-Castillo, R. (2023). Universal and automatic elbow detection for learning the effective number of components in model selection problems. Digital Signal Processing, 104103. | es |
dc.identifier.doi | 10.1016/j.dsp.2023.104103 | es |
dc.identifier.issn | 0165-1684 | |
dc.identifier.uri | https://hdl.handle.net/10115/28705 | |
dc.language.iso | eng | es |
dc.publisher | Elsevier | es |
dc.rights.accessRights | info:eu-repo/semantics/embargoedAccess | es |
dc.subject | Model selection | es |
dc.subject | Order selection | es |
dc.subject | Automatic elbow detection | es |
dc.subject | Variable selection | es |
dc.subject | Clustering | es |
dc.title | Universal and automatic elbow detection for learning the effective number of components in model selection problems | es |
dc.type | info:eu-repo/semantics/article | es |
Archivos
Bloque original
1 - 1 de 1
No hay miniatura disponible
- Nombre:
- UAED_2023.pdf
- Tamaño:
- 1.38 MB
- Formato:
- Adobe Portable Document Format
- Descripción:
Bloque de licencias
1 - 1 de 1
No hay miniatura disponible
- Nombre:
- license.txt
- Tamaño:
- 2.67 KB
- Formato:
- Item-specific license agreed upon to submission
- Descripción: