Algorithms and Implementation Architectures for Hebbian Neural Networks

Fecha

2001

Título de la revista

ISSN de la revista

Título del volumen

Editor

Springer, Berlin, Heidelberg

Resumen

Systolic architectures for Sanger and Rubner Neural Networks (NNs) are proposed, and the local stability of their learning rules is taken into account based on the indirect Lyapunov method. In addition, these learning rules are improved for applications based on Principal Component Analysis (PCA). The local stability analysis and the systolic architectures for Sanger NN and Rubner NN are presented in a common framework.

Descripción

Las Redes Neuronales de Sanger y Rubner son analizadas desde el punto de vista de sistemas dinámicos por lo que se establecen criterios sobre su estabilidad. Se identifica una de sus principales aplicaciones, Análisis de Componente Principales )PCA). Además, se proponen arquitecturas para dichas Redes Neuronales que optimizan la ejecución por máquina de dichas redes. Representan primeras propuesta de algoritmos y arquitectura para Inteligencia Artificial.

Citación