Combining user behavioural information at the feature level to enhance continuous authentication systems

dc.contributor.authorG. Martín, Alejandro
dc.contributor.authorMartín de Diego, Isaac
dc.contributor.authorFernández-Isabel, Alberto
dc.contributor.authorBeltrán, Marta
dc.contributor.authorR. Fernández, Rubén
dc.date.accessioned2023-09-20T10:54:46Z
dc.date.available2023-09-20T10:54:46Z
dc.date.issued2022
dc.descriptionResearch supported by grants from Madrid Autonomous Community, Spain (ref: IND2019/TIC-17169); and from the Spanish Ministry of Economy and Competitiveness, Spain under the Retos-Investigación program: MODAS-IN (ref: RTI-2018-094269-B-I00); and donation of the Titan V GPU by NVIDIA Corporation, Spain; and by grants from Rey Juan Carlos University, Spain (Ref: C1PREDOC2020)es
dc.description.abstractThe scientific and business communities are proposing new authentication methods more robust than traditional solutions relying on a single security point such as passwords (i.e. ‘‘something you know’’). User and Entity Behavior Analysis (UEBA) has postulated as an excellent solution to improve authentication systems by performing continuous authentication to extend the authentication process over time. UEBA is based on detecting anomalies in the intrinsic behaviour of each user or entity (i.e. it is based on ‘‘something you are/do’’). This paper presents a method for performing continuous authentication using UEBA techniques that allows combining information from multiple sources at the feature level. This combination is achieved through a novel Symbolic Aggregate approximation (SAX) using Random Trees Embeddings for each information source, producing a sequence of symbols. Then, these sequences of symbols are combined into a single sequence using temporal information. The resulting sequence of symbols feeds a density-based clustering model that uses a distance based on DNA sequence alignment techniques to extract behavioural cores. Finally, new samples are compared against these cores to detect anomalies using a risk model that evaluates if a behaviour is anomalous (suspected user impersonation). The model has been extensively tested and evaluated against well-known state-of-the-art datasets.es
dc.identifier.citationAlejandro G. Martín, Isaac Martín de Diego, Alberto Fernández-Isabel, Marta Beltrán, Rubén R. Fernández, Combining user behavioural information at the feature level to enhance continuous authentication systems, Knowledge-Based Systems, Volume 244, 2022, 108544, ISSN 0950-7051, https://doi.org/10.1016/j.knosys.2022.108544es
dc.identifier.doi10.1016/j.knosys.2022.108544es
dc.identifier.issn0950-7051
dc.identifier.urihttps://hdl.handle.net/10115/24413
dc.language.isoenges
dc.publisherElsevieres
dc.rightsAttribution-NonCommercial-NoDerivatives 4.0 Internacional*
dc.rights.accessRightsinfo:eu-repo/semantics/openAccesses
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/*
dc.subjectAnomaly detectiones
dc.subjectBehavioural information combinationes
dc.subjectContinuous authenticationes
dc.subjectUser and Entity Behaviour Analyticses
dc.titleCombining user behavioural information at the feature level to enhance continuous authentication systemses
dc.typeinfo:eu-repo/semantics/articlees

Archivos

Bloque original

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
1-s2.0-S0950705122002398-main.pdf
Tamaño:
1.28 MB
Formato:
Adobe Portable Document Format
Descripción:

Bloque de licencias

Mostrando 1 - 1 de 1
No hay miniatura disponible
Nombre:
license.txt
Tamaño:
2.67 KB
Formato:
Item-specific license agreed upon to submission
Descripción: