On the analysis of the influence of the evaluation metric in community detection over social networks

dc.contributor.authorPerez-Pelo, Sergio
dc.contributor.authorSanchez-Oro, Jesus
dc.contributor.authorMartin-Santamaria, Raul
dc.contributor.authorDuarte, Abraham
dc.date.accessioned2024-01-25T06:09:36Z
dc.date.available2024-01-25T06:09:36Z
dc.date.issued2019
dc.description.abstractCommunity detection in social networks is becoming one of the key tasks in social network analysis, since it helps with analyzing groups of users with similar interests. As a consequence, it is possible to detect radicalism or even reduce the size of the data to be analyzed, among other applications. This paper presents a metaheuristic approach based on Greedy Randomized Adaptive Search Procedure (GRASP) methodology for detecting communities in social networks. The community detection problem is modeled as an optimization problem, where the objective function to be optimized is the modularity of the network, a well-known metric in this scientific field. The results obtained outperform classical methods of community detection over a set of real-life instances with respect to the quality of the communities detected.es
dc.identifier.doi10.3390/electronics8010023es
dc.identifier.urihttps://hdl.handle.net/10115/28882
dc.language.isoenges
dc.publisherMDPIes
dc.rightsAtribución 4.0 Internacional*
dc.rights.accessRightsinfo:eu-repo/semantics/openAccesses
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/*
dc.subjectsocial networkes
dc.subjectcommunity detectiones
dc.subjectmetaheuristices
dc.subjectoptimizationes
dc.subjectGRASPes
dc.titleOn the analysis of the influence of the evaluation metric in community detection over social networkses
dc.typeinfo:eu-repo/semantics/articlees

Archivos

Bloque original

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
electronics-08-00023.pdf
Tamaño:
497.13 KB
Formato:
Adobe Portable Document Format
Descripción:
Article

Bloque de licencias

Mostrando 1 - 1 de 1
No hay miniatura disponible
Nombre:
license.txt
Tamaño:
2.67 KB
Formato:
Item-specific license agreed upon to submission
Descripción: