Pedestrian detection with LeNet-like convolutional networks

dc.contributor.authorCuesta-Infante, Alfredo
dc.contributor.authorGarcía, Francisco J.
dc.contributor.authorPantrigo, Juan J.
dc.contributor.authorS. Montemayor, Antonio
dc.date.accessioned2025-01-30T15:08:49Z
dc.date.available2025-01-30T15:08:49Z
dc.date.issued2020-09
dc.description.abstractWe present a detection method that is able to detect a learned target and is valid for both static and moving cameras. As an application, we detect pedestrians, but could be anything if there is a large set of images of it. The data set is fed into a number of deep convolutional networks, and then, two of these models are set in cascade in order to filter the cutouts of a multi-resolution window that scans the frames in a video sequence. We demonstrate that the excellent performance of deep convolutional networks is very difficult to match when dealing with real problems, and yet we obtain competitive results.
dc.identifier.citationCuesta-Infante, A., García, F.J., Pantrigo, J.J. et al. Pedestrian detection with LeNet-like convolutional networks. Neural Comput & Applic 32, 13175–13181 (2020). https://doi.org/10.1007/s00521-017-3197-z
dc.identifier.doi10.1007/s00521-017-3197-z
dc.identifier.issn0941-0643
dc.identifier.issn1433-3058
dc.identifier.urihttps://hdl.handle.net/10115/72177
dc.language.isoen_US
dc.publisherSpringer Nature
dc.rights.accessRightsinfo:eu-repo/semantics/closedAccess
dc.subjectPedestrian detectors
dc.subjectComputer vision
dc.subjectLeNet convolutional networks
dc.subjectImage classification
dc.titlePedestrian detection with LeNet-like convolutional networks
dc.typeArticle

Archivos

Bloque original

Mostrando 1 - 1 de 1
No hay miniatura disponible
Nombre:
Pedestrian_detection_with_LeNet-like_convolutional_networks.pdf
Tamaño:
721.71 KB
Formato:
Adobe Portable Document Format