Comparison of Different Additive Manufacturing Methods for 316L Stainless Steel
dc.contributor.author | Bedmar, Javier | |
dc.contributor.author | Riquelme, Ainhoa | |
dc.contributor.author | Rodrigo, Pilar | |
dc.contributor.author | Torres, Belén | |
dc.contributor.author | Rams, Joaquín | |
dc.date.accessioned | 2024-01-31T07:25:45Z | |
dc.date.available | 2024-01-31T07:25:45Z | |
dc.date.issued | 2021-10-29 | |
dc.description.abstract | In additive manufacturing (AM), the technology and processing parameters are key elements that determine the characteristics of samples for a given material. To distinguish the effects of these variables, we used the same AISI 316L stainless steel powder with different AM techniques. The techniques used are the most relevant ones in the AM of metals, i.e., direct laser deposition (DLD) with a high-power diode laser and selective laser melting (SLM) using a fiber laser and a novel CO2 laser, a novel technique that has not yet been reported with this material. The microstructure of all samples showed austenitic and ferritic phases, which were coarser with the DLD technique than for the two SLM ones. The hardness of the fiber laser SLM samples was the greatest, but its bending strength was lower. In SLM with CO2 laser pieces, the porosity and lack of melting reduced the fracture strain, but the strength was greater than in the fiber laser SLM samples under certain build-up strategies. Specimens manufactured using DLD showed a higher fracture strain than the rest, while maintaining high strength values. In all the cases, crack surfaces were observed and the fracture mechanisms were determined. The processing conditions were compared using a normalized parameters methodology, which has also been used to explain the observed microstructures. | es |
dc.identifier.citation | Bedmar, J.; Riquelme, A.; Rodrigo, P.; Torres, B.; Rams, J. Comparison of Different Additive Manufacturing Methods for 316L Stainless Steel. Materials 2021, 14, 6504. https://doi.org/10.3390/ma14216504 | es |
dc.identifier.doi | 10.3390/ma14216504 | es |
dc.identifier.issn | 1996-1944 | |
dc.identifier.uri | https://hdl.handle.net/10115/29299 | |
dc.language.iso | eng | es |
dc.publisher | MDPI | es |
dc.rights | Attribution 4.0 International | |
dc.rights.accessRights | info:eu-repo/semantics/openAccess | es |
dc.rights.uri | https://creativecommons.org/licenses/by/4.0/ | |
dc.subject | selective laser melting | es |
dc.subject | direct laser deposition | es |
dc.subject | additive manufacturing | es |
dc.subject | 316L | es |
dc.subject | mechanical properties | es |
dc.title | Comparison of Different Additive Manufacturing Methods for 316L Stainless Steel | es |
dc.type | info:eu-repo/semantics/article | es |
Archivos
Bloque original
1 - 1 de 1
Cargando...
- Nombre:
- Aportación 1.pdf
- Tamaño:
- 20.79 MB
- Formato:
- Adobe Portable Document Format
- Descripción:
Bloque de licencias
1 - 1 de 1
No hay miniatura disponible
- Nombre:
- license.txt
- Tamaño:
- 2.67 KB
- Formato:
- Item-specific license agreed upon to submission
- Descripción: