Simultaneous approximation via Laplacians on the unit ball

dc.contributor.authorMarriaga, Misael E.
dc.contributor.authorPérez, Teresa E.
dc.contributor.authorRecarte, Marlon J.
dc.date.accessioned2025-05-12T09:09:51Z
dc.date.available2025-05-12T09:09:51Z
dc.date.issued2023-10-13
dc.description.abstractWe study the orthogonal structure on the unit ball $\mathbf{B}^d$ of $\mathbb{R}^d$ with respect to the Sobolev inner products $$ \left\langle f,g\right\rangle_{\Delta} =\lambda\, \mathscr{L}(f,g) + \int_{\mathbf{B}^d}{\Delta[(1-\|x\|^2) f(x)] \, \Delta[(1-\|x\|^2) g(x)]\,dx}, $$ where $\mathscr{L}(f,g) = \int_{\mathbf{S}^{d-1}}f(\xi)\,g(\xi)\,d\sigma(\xi)$ or $\mathscr{L}(f,g) = f(0) g(0)$, $\lambda >0$, $\sigma$ denotes the surface measure on the unit sphere $\mathbf{S}^{d-1}$, and $\Delta$ is the usual Laplacian operator. Our main contribution consists in the study of orthogonal polynomials associated with $\langle \cdot, \cdot \rangle_{\Delta}$, giving their explicit expression in terms of the classical orthogonal polynomials on the unit ball, and proving that they satisfy a fourth-order partial differential equation, extending the well known property for ball polynomials since they satisfy a second order PDE. We also study the approximation properties of the Fourier sums with respect to these orthogonal polynomials and, in particular, we estimate the error of simultaneous approximation of a function, its partial derivatives, and its Laplacian in the $L^2(\mathbf{B}^d)$ space.
dc.identifier.citationMarriaga, M.E., Pérez, T.E. & Recarte, M.J. Simultaneous Approximation via Laplacians on the Unit Ball. Mediterr. J. Math. 20, 316 (2023). https://doi.org/10.1007/s00009-023-02509-9
dc.identifier.doi10.1007/s00009-023-02509-9
dc.identifier.issn1660-5446
dc.identifier.urihttps://hdl.handle.net/10115/85637
dc.language.isoen
dc.publisherSpringer
dc.rightsAttribution 4.0 Internationalen
dc.rights.accessRightsinfo:eu-repo/semantics/openAccess
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/
dc.subjectApproximation on the ball
dc.subjectinner product via Laplacians
dc.subjectFourier expansions
dc.titleSimultaneous approximation via Laplacians on the unit ball
dc.typeArticle

Archivos

Bloque original

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
Zernike_Sobolev_Simultaneous_approximation.pdf
Tamaño:
411.18 KB
Formato:
Adobe Portable Document Format