Simultaneous approximation via Laplacians on the unit ball
dc.contributor.author | Marriaga, Misael E. | |
dc.contributor.author | Pérez, Teresa E. | |
dc.contributor.author | Recarte, Marlon J. | |
dc.date.accessioned | 2025-05-12T09:09:51Z | |
dc.date.available | 2025-05-12T09:09:51Z | |
dc.date.issued | 2023-10-13 | |
dc.description.abstract | We study the orthogonal structure on the unit ball $\mathbf{B}^d$ of $\mathbb{R}^d$ with respect to the Sobolev inner products $$ \left\langle f,g\right\rangle_{\Delta} =\lambda\, \mathscr{L}(f,g) + \int_{\mathbf{B}^d}{\Delta[(1-\|x\|^2) f(x)] \, \Delta[(1-\|x\|^2) g(x)]\,dx}, $$ where $\mathscr{L}(f,g) = \int_{\mathbf{S}^{d-1}}f(\xi)\,g(\xi)\,d\sigma(\xi)$ or $\mathscr{L}(f,g) = f(0) g(0)$, $\lambda >0$, $\sigma$ denotes the surface measure on the unit sphere $\mathbf{S}^{d-1}$, and $\Delta$ is the usual Laplacian operator. Our main contribution consists in the study of orthogonal polynomials associated with $\langle \cdot, \cdot \rangle_{\Delta}$, giving their explicit expression in terms of the classical orthogonal polynomials on the unit ball, and proving that they satisfy a fourth-order partial differential equation, extending the well known property for ball polynomials since they satisfy a second order PDE. We also study the approximation properties of the Fourier sums with respect to these orthogonal polynomials and, in particular, we estimate the error of simultaneous approximation of a function, its partial derivatives, and its Laplacian in the $L^2(\mathbf{B}^d)$ space. | |
dc.identifier.citation | Marriaga, M.E., Pérez, T.E. & Recarte, M.J. Simultaneous Approximation via Laplacians on the Unit Ball. Mediterr. J. Math. 20, 316 (2023). https://doi.org/10.1007/s00009-023-02509-9 | |
dc.identifier.doi | 10.1007/s00009-023-02509-9 | |
dc.identifier.issn | 1660-5446 | |
dc.identifier.uri | https://hdl.handle.net/10115/85637 | |
dc.language.iso | en | |
dc.publisher | Springer | |
dc.rights | Attribution 4.0 International | en |
dc.rights.accessRights | info:eu-repo/semantics/openAccess | |
dc.rights.uri | http://creativecommons.org/licenses/by/4.0/ | |
dc.subject | Approximation on the ball | |
dc.subject | inner product via Laplacians | |
dc.subject | Fourier expansions | |
dc.title | Simultaneous approximation via Laplacians on the unit ball | |
dc.type | Article |
Archivos
Bloque original
1 - 1 de 1
Cargando...
- Nombre:
- Zernike_Sobolev_Simultaneous_approximation.pdf
- Tamaño:
- 411.18 KB
- Formato:
- Adobe Portable Document Format