Energy-Efficient Access-Point Sleep-Mode Techniques for Cell-Free mmWave Massive MIMO Networks With Non-Uniform Spatial Traffic Density

dc.contributor.authorGarcía Morales, Jan
dc.contributor.authorFemenias Nadal, Guillem
dc.contributor.authorRiera Palou, Felip
dc.date.accessioned2023-12-11T16:20:37Z
dc.date.available2023-12-11T16:20:37Z
dc.date.issued2020-07-27
dc.description.abstractCell-free massive multiple-input multiple-output (MIMO) is a novel beyond 5G (B5G) and 6G paradigm that, through the use of a common central processing unit (CPU), coordinates a large number of distributed access points (APs) to coherently serve mobile stations (MSs) on the same time/frequency resource. By exploiting the characteristics of new less-congested millimeter wave (mmWave) frequency bands, these networks can improve the overall system spectral and energy efficiencies by using low-complexity hybrid precoders/decoders. For this purpose, the system must be correctly dimensioned to provide the required quality of service (QoS) to MSs under different traffic load conditions. However, only heavy traffic load conditions are usually taken into account when analysing these networks and, thus, many APs might be underutilized during low traffic load periods, leading to an inefficient use of resources and waste of energy. Aiming at the implementation of energy-efficient AP switch on/off strategies, several approaches have been proposed in the literature that only consider rather unrealistic uniform spatial traffic distribution in the whole coverage area. Unlike prior works, this paper proposes energy efficient AP sleep-mode techniques for cell-free mmWave massive MIMO networks that are able to capture the inhomogeneous nature of spatial traffic distribution in realistic wireless networks. The proposed framework considers, analyzes and compares different AP switch ON-OFF (ASO) strategies that, based on the use of goodness-of-fit (GoF) tests, are specifically designed to dynamically turn on/off APs to adapt to both the number and the statistical distribution of MSs in the network. Numerical results show that the use of properly designed GoF-based ASO strategies under a non-uniform spatial traffic distribution can serve to considerably improve the achievable energy efficiency.es
dc.identifier.citationJ. García-Morales, G. Femenias and F. Riera-Palou, "Energy-Efficient Access-Point Sleep-Mode Techniques for Cell-Free mmWave Massive MIMO Networks With Non-Uniform Spatial Traffic Density," in IEEE Access, vol. 8, pp. 137587-137605, 2020, doi: 10.1109/ACCESS.2020.3012199.es
dc.identifier.doi10.1109/ACCESS.2020.3012199es
dc.identifier.issn2169-3536
dc.identifier.urihttps://hdl.handle.net/10115/27094
dc.language.isoenges
dc.publisherIEEEes
dc.rightsAtribución 4.0 Internacional*
dc.rights.accessRightsinfo:eu-repo/semantics/openAccesses
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/*
dc.subjectCell-free massive MIMOes
dc.subjectenergy efficiencyes
dc.subjectaccess-point switch on/off techniqueses
dc.subjectmillimeter-wave communicationses
dc.subjectgoodness-of-fites
dc.titleEnergy-Efficient Access-Point Sleep-Mode Techniques for Cell-Free mmWave Massive MIMO Networks With Non-Uniform Spatial Traffic Densityes
dc.typeinfo:eu-repo/semantics/articlees

Archivos

Bloque original

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
IEEEAccess2020.pdf
Tamaño:
2.14 MB
Formato:
Adobe Portable Document Format
Descripción:
Artículo principal

Bloque de licencias

Mostrando 1 - 1 de 1
No hay miniatura disponible
Nombre:
license.txt
Tamaño:
2.67 KB
Formato:
Item-specific license agreed upon to submission
Descripción: