A systematic review on the application of machine learning models in psychometric questionnaires for the diagnosis of attention deficit hyperactivity disorder
dc.contributor.author | Caselles-Pina, Lucía | |
dc.contributor.author | Quesada-López, Alejandro | |
dc.contributor.author | Sújar, Aaron | |
dc.contributor.author | Garzón Hernández, Eva María | |
dc.contributor.author | Delgado-Gómez, David | |
dc.date.accessioned | 2024-09-23T14:18:17Z | |
dc.date.available | 2024-09-23T14:18:17Z | |
dc.date.issued | 2024-02-20 | |
dc.description | This research was partially funded by Grant TED2021-130980B-I00 funded by MCIN/AEI/10.13039/501100011033 and by the ‘European Union NextGeneration EU/PRTR’; Grant RED2022-134259-T funded by MCIN/AEI/10.13039/501100011033; Project ‘DTS21/00091’ funded by Instituto de Salud Carlos III (ISCIII) and co-funded by the European Union; A machine learning study of comorbidity of dyslexia and attention deficiency hyperactivity disorder, UC3M, David Delgado-Gómez; and Grant PEJ-2021-AI/SAL-2147 funded by Consejería de Educación e Investigación. | es |
dc.description.abstract | Attention deficit hyperactivity disorder is one of the most prevalent neurodevelopmental disorders worldwide. Recent studies show that machine learning has great potential for the diagnosis of attention deficit hyperactivity disorder. The aim of the present article is to systematically review the scientific literature on machine learning studies for the diagnosis of attention deficit hyperactivity disorder, focusing on psychometric questionnaire tools. The Preferred Reporting Items for Systematic reviews and Meta-Analyses (PRISMA) guidelines were adopted. The review protocol was registered in the PROSPERO database. A search was conducted in three databases—Web of Science Core Collection, Scopus and Pubmed—with the aim of identifying studies that apply ML techniques to support the diagnosis of attention deficit hyperactivity disorder. A total of 17 empirical studies were found that met the established inclusion criteria. The results showed that machine learning can be used to increase the accuracy of attention deficit hyperactivity disorder diagnosis. Machine learning techniques are useful and effective strategies that can complement traditional diagnostics in patients with attention deficit hyperactivity disorder | es |
dc.identifier.citation | Caselles-Pina, L., Quesada-López, A., Sújar, A., Hernández, E. M. G., & Delgado-Gómez, D. (2024). A systematic review on the application of machine learning models in psychometric questionnaires for the diagnosis of attention deficit hyperactivity disorder. European Journal of Neuroscience, 60(3), 4115–4127. https://doi.org/10.1111/ejn.16288 | es |
dc.identifier.doi | 10.1111/ejn.16288 | es |
dc.identifier.issn | 1460-9568 (online) | |
dc.identifier.issn | 0953-816X (print) | |
dc.identifier.uri | https://hdl.handle.net/10115/39744 | |
dc.language.iso | eng | es |
dc.publisher | Wiley | es |
dc.rights | Attribution-NonCommercial-NoDerivatives 4.0 Internacional | * |
dc.rights.accessRights | info:eu-repo/semantics/openAccess | es |
dc.rights.uri | http://creativecommons.org/licenses/by-nc-nd/4.0/ | * |
dc.title | A systematic review on the application of machine learning models in psychometric questionnaires for the diagnosis of attention deficit hyperactivity disorder | es |
dc.type | info:eu-repo/semantics/article | es |
Archivos
Bloque original
1 - 1 de 1
Cargando...
- Nombre:
- Eur J of Neuroscience - 2024 - Caselles‐Pina - A systematic review on the application of machine learning models in.pdf
- Tamaño:
- 577.04 KB
- Formato:
- Adobe Portable Document Format
- Descripción:
Bloque de licencias
1 - 1 de 1
No hay miniatura disponible
- Nombre:
- license.txt
- Tamaño:
- 2.67 KB
- Formato:
- Item-specific license agreed upon to submission
- Descripción: