A systematic review on the application of machine learning models in psychometric questionnaires for the diagnosis of attention deficit hyperactivity disorder

dc.contributor.authorCaselles-Pina, Lucía
dc.contributor.authorQuesada-López, Alejandro
dc.contributor.authorSújar, Aaron
dc.contributor.authorGarzón Hernández, Eva María
dc.contributor.authorDelgado-Gómez, David
dc.date.accessioned2024-09-23T14:18:17Z
dc.date.available2024-09-23T14:18:17Z
dc.date.issued2024-02-20
dc.descriptionThis research was partially funded by Grant TED2021-130980B-I00 funded by MCIN/AEI/10.13039/501100011033 and by the ‘European Union NextGeneration EU/PRTR’; Grant RED2022-134259-T funded by MCIN/AEI/10.13039/501100011033; Project ‘DTS21/00091’ funded by Instituto de Salud Carlos III (ISCIII) and co-funded by the European Union; A machine learning study of comorbidity of dyslexia and attention deficiency hyperactivity disorder, UC3M, David Delgado-Gómez; and Grant PEJ-2021-AI/SAL-2147 funded by Consejería de Educación e Investigación.es
dc.description.abstractAttention deficit hyperactivity disorder is one of the most prevalent neurodevelopmental disorders worldwide. Recent studies show that machine learning has great potential for the diagnosis of attention deficit hyperactivity disorder. The aim of the present article is to systematically review the scientific literature on machine learning studies for the diagnosis of attention deficit hyperactivity disorder, focusing on psychometric questionnaire tools. The Preferred Reporting Items for Systematic reviews and Meta-Analyses (PRISMA) guidelines were adopted. The review protocol was registered in the PROSPERO database. A search was conducted in three databases—Web of Science Core Collection, Scopus and Pubmed—with the aim of identifying studies that apply ML techniques to support the diagnosis of attention deficit hyperactivity disorder. A total of 17 empirical studies were found that met the established inclusion criteria. The results showed that machine learning can be used to increase the accuracy of attention deficit hyperactivity disorder diagnosis. Machine learning techniques are useful and effective strategies that can complement traditional diagnostics in patients with attention deficit hyperactivity disorderes
dc.identifier.citationCaselles-Pina, L., Quesada-López, A., Sújar, A., Hernández, E. M. G., & Delgado-Gómez, D. (2024). A systematic review on the application of machine learning models in psychometric questionnaires for the diagnosis of attention deficit hyperactivity disorder. European Journal of Neuroscience, 60(3), 4115–4127. https://doi.org/10.1111/ejn.16288es
dc.identifier.doi10.1111/ejn.16288es
dc.identifier.issn1460-9568 (online)
dc.identifier.issn0953-816X (print)
dc.identifier.urihttps://hdl.handle.net/10115/39744
dc.language.isoenges
dc.publisherWileyes
dc.rightsAttribution-NonCommercial-NoDerivatives 4.0 Internacional*
dc.rights.accessRightsinfo:eu-repo/semantics/openAccesses
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/*
dc.titleA systematic review on the application of machine learning models in psychometric questionnaires for the diagnosis of attention deficit hyperactivity disorderes
dc.typeinfo:eu-repo/semantics/articlees

Archivos

Bloque original

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
Eur J of Neuroscience - 2024 - Caselles‐Pina - A systematic review on the application of machine learning models in.pdf
Tamaño:
577.04 KB
Formato:
Adobe Portable Document Format
Descripción:

Bloque de licencias

Mostrando 1 - 1 de 1
No hay miniatura disponible
Nombre:
license.txt
Tamaño:
2.67 KB
Formato:
Item-specific license agreed upon to submission
Descripción: