Portable Multi-Hypothesis Monte Carlo Localization for Mobile Robots

dc.contributor.authorGuerrero Hernández, José Miguel
dc.contributor.authorMartín Rico, Francisco
dc.contributor.authorGarcía Gómez-Jacinto, Antonio Alberto
dc.contributor.authorRodríguez Lera, Francisco Javier
dc.contributor.authorMatellán-Olivera, Vicente
dc.date.accessioned2024-07-05T09:35:52Z
dc.date.available2024-07-05T09:35:52Z
dc.date.issued2023-06-04
dc.description.abstractSelf-localization is a fundamental capability that mobile robot navigation systems integrate to move from one point to another using a map. Thus, any enhancement in localization accuracy is crucial to perform delicate dexterity tasks. This paper describes a new localization algorithm that maintains several populations of particles using the Monte Carlo Localization (MCL) algorithm, always choosing the best one as the system's output. As novelties, our work includes a multi-scale map-matching algorithm to create new MCL populations and a metric to determine the most reliable. It also contributes the state of the art implementations, enhancing recovery times from erroneous estimates or unknown initial positions. The proposed method is evaluated in ROS2 in a module fully integrated with Nav2 and compared with the current state-of-the-art Adaptive AMCL solution, obtaining good accuracy/recovery times.es
dc.identifier.citationA. García, F. Martín, J. M. Guerrero, F. J. Rodríguez and V. Matellán, "Portable Multi-Hypothesis Monte Carlo Localization for Mobile Robots," 2023 IEEE International Conference on Robotics and Automation (ICRA), London, United Kingdom, 2023, pp. 1933-1939, doi: 10.1109/ICRA48891.2023.10160957. keywords: {Location awareness;Solid modeling;Three-dimensional displays;Monte Carlo methods;Navigation;Sociology;Transforms},es
dc.identifier.doi10.1109/ICRA48891.2023.10160957es
dc.identifier.isbn979-8-3503-2366-5
dc.identifier.urihttps://hdl.handle.net/10115/36875
dc.language.isoenges
dc.publisherIEEEes
dc.rights.accessRightsinfo:eu-repo/semantics/closedAccesses
dc.titlePortable Multi-Hypothesis Monte Carlo Localization for Mobile Robotses
dc.typeinfo:eu-repo/semantics/bookPartes

Archivos

Bloque original

Mostrando 1 - 1 de 1
No hay miniatura disponible
Nombre:
Portable_Multi-Hypothesis_Monte_Carlo_Localization_for_Mobile_Robots.pdf
Tamaño:
2.78 MB
Formato:
Adobe Portable Document Format
Descripción:
Artículo principal