Multidimensional hydrogenic states: Position and momentum expectation values
Fecha
2021-04-20
Autores
Título de la revista
ISSN de la revista
Título del volumen
Editor
IOP Publishing
Resumen
The position and momentum probability densities of a multidimensional quantum system are fully characterized by means of the radial expectation values ⟨rα⟩ and , respectively. These quantities, which describe and/or are closely related to various fundamental properties of realistic systems, have not been calculated in an analytical and effective manner up until now except for a number of three-dimensional hydrogenic states. In this work we explicitly show these expectation values for all discrete stationary D-dimensional hydrogenic states in terms of the dimensionality D, the strength of the Coulomb potential (i.e. the nuclear charge) and the D state's hyperquantum numbers. Emphasis is placed on the momentum expectation values (mostly unknown, specially the ones with odd order) which are obtained in a closed compact form. Applications are made to circular, S-wave, high-energy (Rydberg) and high-dimensional (pseudo-classical) states of three- and multidimensional hydrogenic atoms. This has been possible because of the analytical algebraic and asymptotical properties of the special functions (orthogonal polynomials, hyperspherical harmonics) which control the states' wavefunctions. Finally, some Heisenberg-like uncertainty inequalities satisfied by these dispersion quantities are also given and discussed.
Descripción
Palabras clave
Citación
J S Dehesa and D Puertas-Centeno 2021 J. Phys. B: At. Mol. Opt. Phys. 54 065006