Brain-inspired nanophotonic spike computing: challenges and prospects

dc.contributor.authorRomeira, Bruno
dc.contributor.authorAdão, Ricardo
dc.contributor.authorNieder, Jana B.
dc.contributor.authorAl-Taai, Qusay Raghib Ali
dc.contributor.authorZhang, Weikang
dc.contributor.authorHadfield, Robert H.
dc.contributor.authorWasige, Edward
dc.contributor.authorHejda, Matěj
dc.contributor.authorHurtado, Antonio
dc.contributor.authorMalysheva, Ekaterina
dc.contributor.authorDolores-Calzadilla, Victor
dc.contributor.authorLourenço, João
dc.contributor.authorAlves, David Castro
dc.contributor.authorFigueiredo, José
dc.contributor.authorOrtega-Piwonka, Ignacio
dc.contributor.authorJavaloyes, Julien J. P.
dc.contributor.authorEdwards, Stuart
dc.contributor.authorDavies, J. Iwan
dc.contributor.authorHorst, Folkert
dc.contributor.authorOffrein, Bert J.
dc.date.accessioned2024-09-05T09:53:57Z
dc.date.available2024-09-05T09:53:57Z
dc.date.issued2023-07-14
dc.descriptionEuropean Union, H2020-FET-OPEN project 'ChipAI' (Grant 828841). European Union, Horizon Europe project 'InsectNeuroNano' (Grant 101046790). UK Research and Innovation (UKRI) Turing AI Acceleration Fellowships Programme (EP/V025198/1).es
dc.description.abstractNanophotonic spiking neural networks (SNNs) based on neuron-like excitable subwavelength (submicrometre) devices are of key importance for realizing brain-inspired, power-efficient artificial intelligence (AI) systems with high degree of parallelism and energy efficiency. Despite significant advances in neuromorphic photonics, compact and efficient nanophotonic elements for spiking signal emission and detection, as required for spike-based computation, remain largely unexplored. In this invited perspective, we outline the main challenges, early achievements, and opportunities toward a key-enabling photonic neuro-architecture using III–V/Si integrated spiking nodes based on nanoscale resonant tunnelling diodes (nanoRTDs) with folded negative differential resistance. We utilize nanoRTDs as nonlinear artificial neurons capable of spiking at high-speeds. We discuss the prospects for monolithic integration of nanoRTDs with nanoscale light-emitting diodes and nanolaser diodes, and nanophotodetectors to realize neuron emitter and receiver spiking nodes, respectively. Such layout would have a small footprint, fast operation, and low power consumption, all key requirements for efficient nano-optoelectronic spiking operation. We discuss how silicon photonics interconnects, integrated photorefractive interconnects, and 3D waveguide polymeric interconnections can be used for interconnecting the emitter-receiver spiking photonic neural nodes. Finally, using numerical simulations of artificial neuron models, we present spike-based spatio-temporal learning methods for applications in relevant AI-based functional tasks, such as image pattern recognition, edge detection, and SNNs for inference and learning. Future developments in neuromorphic spiking photonic nanocircuits, as outlined here, will significantly boost the processing and transmission capabilities of next-generation nanophotonic spike-based neuromorphic architectures for energy-efficient AI applications. This perspective paper is a result of the European Union funded research project ChipAI in the frame of the Horizon 2020 Future and Emerging Technologies Open programme.es
dc.identifier.citationBruno Romeira et al. Brain-inspired nanophotonic spike computing: challenges and prospects. Neuromorphic Computing and Engineering 3, 033001 (2023)es
dc.identifier.doi10.1088/2634-4386/acdf17es
dc.identifier.issn2634-4386
dc.identifier.urihttps://hdl.handle.net/10115/39377
dc.language.isoenges
dc.publisherIOP Publishinges
dc.rightsAttribution 4.0 Internacional*
dc.rights.accessRightsinfo:eu-repo/semantics/openAccesses
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/*
dc.subjectNanophotonicses
dc.subjectResonant tunneling diodeses
dc.subjectNanoLEDses
dc.subjectNanolaserses
dc.subjectNeuromorphic computinges
dc.subjectOptical interconnectses
dc.subjectSpiking neural networkses
dc.subjectNeural networkses
dc.subjectLightes
dc.subjectLaseres
dc.subjectExcitbilityes
dc.subjectIntegrationes
dc.subjectDriven modulationes
dc.subjectEfficientes
dc.titleBrain-inspired nanophotonic spike computing: challenges and prospectses
dc.typeinfo:eu-repo/semantics/articlees

Archivos

Bloque original

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
Brain-inspired nanophotonic spike computing. Challenges and prospects.pdf
Tamaño:
8.84 MB
Formato:
Adobe Portable Document Format
Descripción:
Main article

Bloque de licencias

Mostrando 1 - 1 de 1
No hay miniatura disponible
Nombre:
license.txt
Tamaño:
2.67 KB
Formato:
Item-specific license agreed upon to submission
Descripción: