Identification of Smith–Magenis syndrome cases through an experimental evaluation of machine learning methods

dc.contributor.authorFernández-Ruiz, Raúl
dc.contributor.authorNúñez-Vidal, Esther
dc.contributor.authorHidalgo-deLaGuía, Irene
dc.contributor.authorGarayzábal-Heinze, Elena
dc.contributor.authorÁlvarez-Marquina, Agustín
dc.contributor.authorMartínez-Olalla, Rafael
dc.contributor.authorPalacios-Alonso, Daniel
dc.date.accessioned2024-07-05T10:03:38Z
dc.date.available2024-07-05T10:03:38Z
dc.date.issued2024-03-22
dc.description.abstractThis research work introduces a novel, nonintrusive method for the automatic identification of Smith–Magenis syndrome, traditionally studied through genetic markers. The method utilizes cepstral peak prominence and various machine learning techniques, relying on a single metric computed by the research group. The performance of these techniques is evaluated across two case studies, each employing a unique data preprocessing approach. A proprietary data “windowing” technique is also developed to derive a more representative dataset. To address class imbalance in the dataset, the synthetic minority oversampling technique (SMOTE) is applied for data augmentation. The application of these preprocessing techniques has yielded promising results from a limited initial dataset. The study concludes that the k-nearest neighbors and linear discriminant analysis perform best, and that cepstral peak prominence is a promising measure for identifying Smith–Magenis syndrome.es
dc.identifier.citationFernández-Ruiz, R., Núñez-Vidal, E., Hidalgo-Delaguía, I., Garayzábal-Heinze, E., Álvarez-Marquina, A., Martínez-Olalla, R., & Palacios-Alonso, D. (2024). Identification of Smith–Magenis syndrome cases through an experimental evaluation of machine learning methods. Frontiers in Computational Neuroscience, 18, 1357607.es
dc.identifier.doi10.3389/fncom.2024.1357607es
dc.identifier.issn1662-5188 (online)
dc.identifier.urihttps://hdl.handle.net/10115/36889
dc.language.isoenges
dc.publisherFrontiers Mediaes
dc.rightsAtribución 4.0 Internacional*
dc.rights.accessRightsinfo:eu-repo/semantics/openAccesses
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/*
dc.subjectSmith-Magenis Syndromees
dc.subjectMachine learninges
dc.subjectCepstral Peak Prominencees
dc.subjectAcousticses
dc.subjectChildrenes
dc.titleIdentification of Smith–Magenis syndrome cases through an experimental evaluation of machine learning methodses
dc.typeinfo:eu-repo/semantics/articlees

Archivos

Bloque original

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
fncom-18-1357607.pdf
Tamaño:
3.97 MB
Formato:
Adobe Portable Document Format
Descripción:

Bloque de licencias

Mostrando 1 - 1 de 1
No hay miniatura disponible
Nombre:
license.txt
Tamaño:
2.67 KB
Formato:
Item-specific license agreed upon to submission
Descripción: