On the dynamics of the combinatorial model of the real line

dc.contributor.authorPedro J., Chocano
dc.date.accessioned2023-12-21T09:44:51Z
dc.date.available2023-12-21T09:44:51Z
dc.date.issued2023-04-09
dc.description.abstractWe study dynamical systems defined on the combinatorial model of the real line. We prove that using single-valued maps there are no periodic points of period 3, which contrasts with the classical and less restrictive setting. Then, we use Vietoris-like multivalued maps to show that there is more flexibility, at least in terms of periods, in this combinatorial framework than in the usual one because we do not have the conditions about the existence of periods given by the Sharkovski Theorem.es
dc.identifier.citationPedro J. Chocano. On the dynamics of the combinatorial model of the real line. Dynamical Systems, 38 (3), 395-404, 2023es
dc.identifier.doi10.1080/14689367.2023.2193677es
dc.identifier.urihttps://hdl.handle.net/10115/27628
dc.language.isoenges
dc.publisherTaylor and Francises
dc.rights.accessRightsinfo:eu-repo/semantics/embargoedAccesses
dc.subjectMatemáticases
dc.titleOn the dynamics of the combinatorial model of the real linees
dc.typeinfo:eu-repo/semantics/articlees

Archivos

Bloque original

Mostrando 1 - 1 de 1
No hay miniatura disponible
Nombre:
2209.01837.pdf
Tamaño:
363.75 KB
Formato:
Adobe Portable Document Format
Descripción:
Artículo principal aceptado