Computational approaches to Explainable Artificial Intelligence: Advances in theory, applications and trends
Fecha
2023-07-19
Título de la revista
ISSN de la revista
Título del volumen
Editor
Elsevier
Resumen
Deep Learning (DL), a groundbreaking branch of Machine Learning (ML), has emerged as a driving force
in both theoretical and applied Artificial Intelligence (AI). DL algorithms, rooted in complex and non-linear
artificial neural systems, excel at extracting high-level features from data. DL has demonstrated humanlevel
performance in real-world tasks, including clinical diagnostics, and has unlocked solutions to previously
intractable problems in virtual agent design, robotics, genomics, neuroimaging, computer vision, and industrial
automation. In this paper, the most relevant advances from the last few years in Artificial Intelligence (AI)
and several applications to neuroscience, neuroimaging, computer vision, and robotics are presented, reviewed
and discussed. In this way, we summarize the state-of-the-art in AI methods, models and applications within
a collection of works presented at the 9th International Conference on the Interplay between Natural and
Artificial Computation (IWINAC). The works presented in this paper are excellent examples of new scientific
discoveries made in laboratories that have successfully transitioned to real-life applications.
Descripción
Citación
J.M. Górriz, I. Álvarez-Illán, A. Álvarez-Marquina, J.E. Arco, M. Atzmueller, F. Ballarini, E. Barakova, G. Bologna, P. Bonomini, G. Castellanos-Dominguez, D. Castillo-Barnes, S.B. Cho, R. Contreras, J.M. Cuadra, E. Domínguez, F. Domínguez-Mateos, R.J. Duro, D. Elizondo, A. Fernández-Caballero, E. Fernandez-Jover, M.A. Formoso, N.J. Gallego-Molina, J. Gamazo, J. García González, J. Garcia-Rodriguez, C. Garre, J. Garrigós, A. Gómez-Rodellar, P. Gómez-Vilda, M. Graña, B. Guerrero-Rodriguez, S.C.F. Hendrikse, C. Jimenez-Mesa, M. Jodra-Chuan, V. Julian, G. Kotz, K. Kutt, M. Leming, J. de Lope, B. Macas, V. Marrero-Aguiar, J.J. Martinez, F.J. Martinez-Murcia, R. Martínez-Tomás, J. Mekyska, G.J. Nalepa, P. Novais, D. Orellana, A. Ortiz, D. Palacios-Alonso, J. Palma, A. Pereira, P. Pinacho-Davidson, M.A. Pinninghoff, M. Ponticorvo, A. Psarrou, J. Ramírez, M. Rincón, V. Rodellar-Biarge, I. Rodríguez-Rodríguez, P.H.M.P. Roelofsma, J. Santos, D. Salas-Gonzalez, P. Salcedo-Lagos, F. Segovia, A. Shoeibi, M. Silva, D. Simic, J. Suckling, J. Treur, A. Tsanas, R. Varela, S.H. Wang, W. Wang, Y.D. Zhang, H. Zhu, Z. Zhu, J.M. Ferrández-Vicente, Computational approaches to Explainable Artificial Intelligence: Advances in theory, applications and trends, Information Fusion, Volume 100, 2023, 101945, ISSN 1566-2535, https://doi.org/10.1016/j.inffus.2023.101945
Colecciones
Excepto si se señala otra cosa, la licencia del ítem se describe como Attribution-NonCommercial 4.0 International