Deep Shape-from-Template: Single-image Quasi-isometric Deformable Registration and Reconstruction

dc.contributor.authorFuentes-Jimenez, David
dc.contributor.authorPizarro, Daniel
dc.contributor.authorCasillas-Pérez, David
dc.contributor.authorCollins, Toby
dc.contributor.authorBartoli, Adrien
dc.date.accessioned2023-09-22T07:02:07Z
dc.date.available2023-09-22T07:02:07Z
dc.date.issued2022
dc.descriptionThis research has been supported by the Spanish Ministry of Science and Innovation MCIN/AEI/10.13039/501100011033 through the Project ATHENA under Grant PID2020-115995RB-I00. This work has been also supported by the Spanish Ministry of Education trough the Jose Castillejo fellowship under Grant CAS21/00182es
dc.description.abstractShape-from-Template (SfT) solves 3D vision from a single image and a deformable 3D object model, called a template. Concretely, SfT computes registration (the correspondence between the template and the image) and reconstruction (the depth in camera frame). It constrains the object deformation to quasi-isometry. Real-time and automatic SfT represents an open problem for complex objects and imaging conditions. We present four contributions to address core unmet challenges to realise SfT with a Deep Neural Network (DNN). First, we propose a novel DNN called DeepSfT, which encodes the template in its weights and hence copes with highly complex templates. Second, we propose a semi-supervised training procedure to exploit real data. This is a practical solution to overcome the render gap that occurs when training only with simulated data. Third, we propose a geometry adaptation module to deal with different cameras at training and inference. Fourth, we combine statistical learning with physics-based reasoning. DeepSfT runs automatically and in real-time and we show with numerous experiments and an ablation study that it consistently achieves a lower 3D error than previous work. It outperforms in generalisation and achieves great performance in terms of reconstruction and registration error with widebaseline, occlusions, illumination changes, weak texture and blur.es
dc.identifier.citationDavid Fuentes-Jimenez, Daniel Pizarro, David Casillas-Pérez, Toby Collins, Adrien Bartoli, Deep Shape-from-Template: Single-image quasi-isometric deformable registration and reconstruction, Image and Vision Computing, Volume 127, 2022, 104531, ISSN 0262-8856, https://doi.org/10.1016/j.imavis.2022.104531es
dc.identifier.doi10.1016/j.imavis.2022.104531es
dc.identifier.issn1872-8138
dc.identifier.urihttps://hdl.handle.net/10115/24469
dc.language.isoenges
dc.publisherElsevieres
dc.rightsAttribution-NonCommercial-NoDerivatives 4.0 Internacional*
dc.rights.accessRightsinfo:eu-repo/semantics/openAccesses
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/*
dc.subjectMonoculares
dc.subject3D Modeles
dc.subjectRegistrationes
dc.subjectReconstructiones
dc.subjectWide-baselinees
dc.subjectDensees
dc.subjectDeformablees
dc.subjectShape-from-Templatees
dc.titleDeep Shape-from-Template: Single-image Quasi-isometric Deformable Registration and Reconstructiones
dc.typeinfo:eu-repo/semantics/articlees

Archivos

Bloque original

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
1-s2.0-S0262885622001603-main.pdf
Tamaño:
5.84 MB
Formato:
Adobe Portable Document Format
Descripción:

Bloque de licencias

Mostrando 1 - 1 de 1
No hay miniatura disponible
Nombre:
license.txt
Tamaño:
2.67 KB
Formato:
Item-specific license agreed upon to submission
Descripción: