Existence and comparison results for an elliptic equation involving the 1-Laplacian and L^1-data

dc.contributor.authorLatorre, Marta
dc.contributor.authorSegura de León, Sergio
dc.date.accessioned2024-03-22T12:30:24Z
dc.date.available2024-03-22T12:30:24Z
dc.date.issued2018
dc.description.abstractThis paper is devoted to analyse the Dirichlet problem for a nonlinear elliptic equation involving the 1-Laplacian and a total variation term, that is, the inhomogeneous case of the equation arising in the level set formulation of the inverse mean curvature flow. We study this problem in an open bounded set with Lipschitz boundary. We prove an existence result and a comparison principle for non-negative L^1-data. Moreover, we search the summability that the solution reaches when more regular L^p-data, with 1<p<N, are considered and we give evidence that this summability is optimal. To prove these results, we apply the theory of L^\infty-divergence-measure fields which goes back to Anzellotti (1983). The main difficulties of the proofs come from the absence of a definition for the pairing of a general L^\infty-divergence--measure field and the gradient of an unbounded BV-function.es
dc.identifier.citationLatorre, M., Segura de León, S. Existence and comparison results for an elliptic equation involving the 1-Laplacian and L^1-data. J. Evol. Equ. 18, 1–28 (2018). https://doi.org/10.1007/s00028-017-0388-0es
dc.identifier.doi10.1007/s00028-017-0388-0es
dc.identifier.urihttps://hdl.handle.net/10115/31561
dc.language.isoenges
dc.rightsAtribución 4.0 Internacional
dc.rights.accessRightsinfo:eu-repo/semantics/embargoedAccesses
dc.rights.urihttps://creativecommons.org/licenses/by/4.0/
dc.subjectNonlinear elliptic equationses
dc.subjectL^1-dataes
dc.subject1-Laplacian operatores
dc.subjectTotal variation termes
dc.subjectComparison principlees
dc.subjectInverse mean curvature flowes
dc.titleExistence and comparison results for an elliptic equation involving the 1-Laplacian and L^1-dataes
dc.typeinfo:eu-repo/semantics/articlees

Archivos

Bloque original

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
LS2.pdf
Tamaño:
454.37 KB
Formato:
Adobe Portable Document Format
Descripción:
Artículo

Bloque de licencias

Mostrando 1 - 1 de 1
No hay miniatura disponible
Nombre:
license.txt
Tamaño:
2.67 KB
Formato:
Item-specific license agreed upon to submission
Descripción: