Electrical Transport Mechanisms in Graphene Nanoplatelet Doped Polydimethylsiloxane and Application to Ultrasensitive Temperature Sensors

dc.contributor.authorFernández Sánchez-Romate, Xoan Xosé
dc.contributor.authorBosque García, Antonio del
dc.contributor.authorSánchez, María
dc.contributor.authorUreña, Alejandro
dc.date.accessioned2023-09-25T10:56:44Z
dc.date.available2023-09-25T10:56:44Z
dc.date.issued2023
dc.descriptionThis work was supported by the Agencia Estatal de Investigación of Spanish Government [Project MULTIFUNC-EVs PID2019-107874RB-I00], Comunidad de Madrid regional government [PROJECT ADITIMAT-CM (S2018/NMT-4411)], and Young Researchers IMPULSO program by Universidad Rey Juan Carlos [ref. 2986, SMARTSENS].es
dc.description.abstractThe temperature effect on electronic transport mechanisms in graphene nanoplatelet (GNP) doped polydimethylsiloxane (PDMS) for temperature sensing applications has been investigated under electrical impedance spectroscopy (EIS) analysis. AC measurements showed a very prevalent frequency-dependent behavior in low filled nanocomposites due to the lower charge density. In fact, 4 wt % GNP samples showed a nonideal capacitive behavior due to scattering effects. Therefore, the standard RC-LRC circuit varies with the substitution of capacitive elements by CPEs, where a CPE is a constant phase element which denotes energy dissipation. In this regard, the temperature promotes a prevalence of scattering effects, with an increase of resistance and inductance and a decrease of capacitance values in both RC (intrinsic and contact mechanisms) and LRC (tunneling mechanisms) elements and, even, a change from ideal to nonideal capacitive behavior as in the case of 6 wt % GNP samples. In this way, a deeper understanding of electronic mechanisms depending on GNP content and temperature is achieved in a very intuitive way. Finally, a proof-of-concept carried out as temperature sensors showed a huge sensitivity (from 0.05 to 11.7 °C–1) in comparison to most of the consulted studies (below 0.01 °C–1), proving, thus, excellent capabilities never seen before for this type of application.es
dc.identifier.citationElectrical Transport Mechanisms in Graphene Nanoplatelet Doped Polydimethylsiloxane and Application to Ultrasensitive Temperature Sensors Xoan Xosé Fernández Sánchez-Romate, Antonio del Bosque García, María Sánchez, and Alejandro Ureña ACS Applied Materials & Interfaces 2023 15 (18), 22377-22394 DOI: 10.1021/acsami.2c22162es
dc.identifier.doi10.1021/acsami.2c22162es
dc.identifier.issn1944-8252
dc.identifier.urihttps://hdl.handle.net/10115/24527
dc.language.isoenges
dc.publisherACSes
dc.rightsAtribución 4.0 Internacional*
dc.rights.accessRightsinfo:eu-repo/semantics/openAccesses
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/*
dc.subjectGraphene nanoplatelets,es
dc.subjectPDMSes
dc.subjectTemperature sensores
dc.subjectElectrical impedance spectroscopyes
dc.subjectElectrical propertieses
dc.titleElectrical Transport Mechanisms in Graphene Nanoplatelet Doped Polydimethylsiloxane and Application to Ultrasensitive Temperature Sensorses
dc.typeinfo:eu-repo/semantics/articlees

Archivos

Bloque original

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
acsami.2c22162.pdf
Tamaño:
9.57 MB
Formato:
Adobe Portable Document Format
Descripción: