Fourier analysis of a delayed Rulkov neuron network

dc.contributor.authorLozano, Roberto
dc.contributor.authorUsed, Javier
dc.contributor.authorFernández Sanjuán, Miguel Ángel
dc.date.accessioned2023-12-18T11:45:03Z
dc.date.available2023-12-18T11:45:03Z
dc.date.issued2019
dc.descriptionThis work was supported by the Spanish State Research Agency (AEI) and the European Regional Development Fund (FEDER) under Project No. FIS2016-76883-P .es
dc.description.abstractWe have analyzed the synchronization of some different networks of chaotic Rulkov neu- rons with an electrical coupling that contains a delay. We have developed an algorithm to compute a certain delay whose result is to improve the synchronization of the net- work when it was slightly synchronized, or to get synchronized when it was desynchro- nized. Our general approach has been to use tools from signal analysis, such as Fourier and wavelet transforms. With these tools, we have characterized the behavior of the neurons for different parameters in frequency and time-frequency domains. The algorithm has been applied for two well-known network models: the small-world and Erdös-Rényi. We have also tested the algorithm by using non-homogeneous neurons affected with a parametric noise.es
dc.identifier.citationRoberto Lozano, Javier Used, Miguel A.F. Sanjuán, Fourier analysis of a delayed Rulkov neuron network, Communications in Nonlinear Science and Numerical Simulation, Volume 75, 2019, Pages 62-75, ISSN 1007-5704, https://doi.org/10.1016/j.cnsns.2019.03.017.es
dc.identifier.doi10.1016/j.cnsns.2019.03.017.es
dc.identifier.issn1878-7274
dc.identifier.urihttps://hdl.handle.net/10115/27402
dc.language.isoenges
dc.publisherElsevieres
dc.rightsAttribution-NonCommercial-NoDerivs 4.0 International*
dc.rights.accessRightsinfo:eu-repo/semantics/openAccesses
dc.rights.urihttps://creativecommons.org/licenses/by-nc-nd/4.0/*
dc.subjectRulkov modeles
dc.subjectSynchronizationes
dc.subjectNeuron networkses
dc.subjectSignal analysises
dc.titleFourier analysis of a delayed Rulkov neuron networkes
dc.typeinfo:eu-repo/semantics/articlees

Archivos

Bloque original

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
CNSNS-S-18-02437.pdf
Tamaño:
3.71 MB
Formato:
Adobe Portable Document Format
Descripción:
Artículo principal