Human Activity Recognition with Capsule Networks

dc.contributor.authorLlopis-Ibor, L.
dc.contributor.authorCuesta-Infante, A.
dc.contributor.authorBeltrán-Royo, César
dc.contributor.authorPantrigo, J.J.
dc.date.accessioned2024-09-16T09:01:38Z
dc.date.available2024-09-16T09:01:38Z
dc.date.issued2021-09-13
dc.description.abstractHuman activity recognition is a challenging problem, where deep learning methods are showing to be very efficient. In this paper we propose the use of capsule networks. This type of networks have proved to generalize better to novel viewpoints than convolutional neural networks. We show that the use of capsule networks into a straightforward architecture, between a convolutional preprocessing stage to extract visual features and a header for carrying out the task, is able to attain competitive results with spatio-temporal data without the use of any kind of recurrent neural network. Moreover, an analysis of the obtained results shows that our architecture is capable of learning the properties that encode the spatio-temporal dynamics of the movements that characterize each activityes
dc.identifier.citationLlopis-Ibor, L., Cuesta-Infante, A., Beltran-Royo, C., Pantrigo, J.J. (2021). Human Activity Recognition with Capsule Networks. In: Alba, E., et al. Advances in Artificial Intelligence. CAEPIA 2021. Lecture Notes in Computer Science(), vol 12882. Springer, Cham. https://doi.org/10.1007/978-3-030-85713-4_8es
dc.identifier.doi10.1007/978-3-030-85713-4_8es
dc.identifier.urihttps://hdl.handle.net/10115/39551
dc.publisherSpringeres
dc.rights.accessRightsinfo:eu-repo/semantics/closedAccesses
dc.titleHuman Activity Recognition with Capsule Networkses
dc.typeinfo:eu-repo/semantics/bookPartes

Archivos

Bloque original

Mostrando 1 - 1 de 1
No hay miniatura disponible
Nombre:
21Caepia.pdf
Tamaño:
516.43 KB
Formato:
Adobe Portable Document Format
Descripción: