Stream-based perception for cognitive agents in mobile ecosystems

dc.contributor.authorDötterl, Jeremias
dc.contributor.authorBruns, Ralf
dc.contributor.authorDunkel, Jürgen
dc.contributor.authorOssowski, Sascha
dc.date.accessioned2024-01-18T09:10:53Z
dc.date.available2024-01-18T09:10:53Z
dc.date.issued2019-10-11
dc.description.abstractCognitive agent abstractions can help to engineer intelligent systems across mobile devices. On smartphones, the data obtained from onboard sensors can give valuable insights into the user’s current situation. Unfortunately, today’s cognitive agent frameworks cannot cope well with the challenging characteristics of sensor data. Sensor data is located on a low abstraction level and the individual data elements are not meaningful when observed in isolation. In contrast, cognitive agents operate on high-level percepts and lack the means to effectively detect complex spatio-temporal patterns in sequences of multiple percepts. In this paper, we present a stream-based perception approach that enables the agents to perceive meaningful situations in low-level sensor data streams. We present a crowdshipping case study where autonomous, self-interested agents collaborate to deliver parcels to their destinations. We show how situations derived from smartphone sensor data can trigger and guide auctions, which the agents use to reach agreements. Experiments with real smartphone data demonstrate the benefits of stream-based agent perception.es
dc.identifier.citationJeremias Dötterl, Ralf Bruns, Jürgen Dunkel, Sascha Ossowski: Stream-based perception for cognitive agents in mobile ecosystems. AI Commun. 32(4): 271-286 (2019)es
dc.identifier.doi10.3233/AIC-190614es
dc.identifier.issn0921-7126
dc.identifier.issn1875-8452
dc.identifier.urihttps://hdl.handle.net/10115/28550
dc.language.isoenges
dc.publisherIOS Presses
dc.rightsAttribution-NonCommercial-NoDerivs 4.0 International*
dc.rights.accessRightsinfo:eu-repo/semantics/openAccesses
dc.rights.urihttps://creativecommons.org/licenses/by-nc-nd/4.0/*
dc.subjectMulti-agent systemses
dc.subjectdata stream processinges
dc.subjectmobile computinges
dc.subjectAgent perceptiones
dc.titleStream-based perception for cognitive agents in mobile ecosystemses
dc.typeinfo:eu-repo/semantics/articlees

Archivos

Bloque original

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
AICom-2019-Accepted.pdf
Tamaño:
1.26 MB
Formato:
Adobe Portable Document Format
Descripción:

Bloque de licencias

Mostrando 1 - 1 de 1
No hay miniatura disponible
Nombre:
license.txt
Tamaño:
2.67 KB
Formato:
Item-specific license agreed upon to submission
Descripción: