Ordinal synchronization: Using ordinal patterns to capture interdependencies between time series

dc.contributor.authorEchegoyen, Ignacio
dc.contributor.authorVera-Ávila, Víctor
dc.contributor.authorSevilla-Escoboza, Ricardo
dc.contributor.authorMartínez, Johann H.
dc.contributor.authorBuldú, Javier M.
dc.date.accessioned2025-01-08T15:17:13Z
dc.date.available2025-01-08T15:17:13Z
dc.date.issued2019-02
dc.description.abstractWe introduce Ordinal Synchronization ( OS ) as a new measure to quantify synchronization between dynamical systems. OS is calculated from the extraction of the ordinal patterns related to two time series, their transformation into D -dimensional ordinal vectors and the adequate quantification of their alignment. OS provides a fast and robust-to noise tool to assess synchronization without any implicit assumption about the distribution of data sets nor their dynamical properties, capturing in-phase and anti-phase synchronization. Furthermore, varying the length of the ordinal vectors required to compute OS it is possible to detect synchronization at different time scales. We test the performance of OS with data sets coming from unidirectionally coupled electronic Lorenz oscillators and brain imaging datasets obtained from magnetoencephalographic recordings, comparing the performance of OS with other classical metrics that quantify synchronization between dynamical systems.
dc.identifier.citationI. Echegoyen, V. Vera-Ávila, R. Sevilla-Escoboza, J.H. Martínez, J.M. Buldú, Ordinal synchronization: Using ordinal patterns to capture interdependencies between time series, Chaos, Solitons & Fractals, Volume 119, 2019, Pages 8-18, ISSN 0960-0779, https://doi.org/10.1016/j.chaos.2018.12.006
dc.identifier.doihttps://doi.org/10.1016/j.chaos.2018.12.006
dc.identifier.issn0960-0779
dc.identifier.urihttps://hdl.handle.net/10115/52737
dc.language.isoen
dc.publisherElsevier
dc.rightsAttribution-NonCommercial-NoDerivatives 4.0 Internationalen
dc.rights.accessRightsinfo:eu-repo/semantics/embargoedAccess
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/
dc.subjectcomplexity
dc.subjectsynchronization
dc.subjectnonlinear dynamics
dc.titleOrdinal synchronization: Using ordinal patterns to capture interdependencies between time series
dc.typeArticle

Archivos

Bloque original

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
2019_csf_preaceptado.pdf
Tamaño:
2.66 MB
Formato:
Adobe Portable Document Format