Characterization of Fractal Basins Using Deep Convolutional Neural Networks

dc.contributor.authorValle, David
dc.contributor.authorWagemakers, Alexandre
dc.contributor.authorDaza, Alvar
dc.contributor.authorSanjuán, Miguel A.F.
dc.date.accessioned2024-12-19T08:58:45Z
dc.date.available2024-12-19T08:58:45Z
dc.date.issued2022-07-12
dc.description.abstractNeural network models have recently demonstrated impressive prediction performance in complex systems where chaos and unpredictability appear. In spite of the research efforts carried out on predicting future trajectories or improving their accuracy compared to numerical methods, not sufficient work has been done on using deep learning techniques in which the unpredictability can be characterized of chaotic systems or give a general view of the global unpredictability of a system. In this work, we propose a novel approach based on deep learning techniques to measure the fractal dimension of the basins of attraction of the Duffing oscillator for a variety of parameters. As a consequence, we provide an algorithm capable of predicting fractal dimension measures as accurately as the box-counting algorithm, but with a computation speed about ten times faster.
dc.identifier.citationZhang, Y., & Wang, X. (2022). A new approach to chaos synchronization in fractional-order systems. International Journal of Bifurcation and Chaos, 32(12), 2250200. https://doi.org/10.1142/S0218127422502005
dc.identifier.doi10.1142/s0218127422502005
dc.identifier.issn0218-1274
dc.identifier.urihttps://hdl.handle.net/10115/43797
dc.language.isoen
dc.publisherInternational Journal of Bifurcation and Chaos
dc.rights.accessRightsinfo:eu-repo/semantics/openAccess
dc.subjectDeep learning
dc.subjectchaos
dc.subjectunpredictability
dc.subjectfractal dimension
dc.subjectDuffing oscillator
dc.titleCharacterization of Fractal Basins Using Deep Convolutional Neural Networks
dc.typeArticle

Archivos

Bloque original

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
DavidValle_July_11.pdf
Tamaño:
2.32 MB
Formato:
Adobe Portable Document Format

Bloque de licencias

Mostrando 1 - 1 de 1
No hay miniatura disponible
Nombre:
license.txt
Tamaño:
2.96 KB
Formato:
Item-specific license agreed upon to submission
Descripción: