Higher-order nonlinear special functions: Painlevé hierarchies, a survey
Archivos
Fecha
2024
Título de la revista
ISSN de la revista
Título del volumen
Editor
American Mathematical Society
Enlace externo
Resumen
The six Painlevé transcendents are widely accepted as nonlinear special functions. Over the last quarter of a century or so, there has been a surge of interest in higher-order analogues of the Painlevé equations, most often defined as members of hierarchies of equations of increasing order, i.e., of so-called Painlevé hierarchies. We give here a survey of such Painlevé hierarchies, including of their derivation and the derivation of their properties. Amongst other aspects, we discuss the relationships between the properties of completely integrable hierarchies, e.g., Hamiltonian structures and Miura maps, nonisospectral scattering problems, and those of Painlevé hierarchies, e.g., Lax pairs, B¨acklund and auto-B¨acklund transformations, and sequences of special solutions. Given the large number of papers published on Painlevé hierarchies, we hope this review will serve as a useful future reference.
Descripción
The authors were supported by project PID2020-115273GB-I00 funded by MCIN/AEI/10.13039/501100011033 and grant RED2022-134301-T funded by MCIN/AEI/10.13039/501100011033.
Citación
P. R. Gordoa, A. Pickering, Higher order nonlinear special functions: Painlevé hierarchies, a survey, in "Progress in Special Functions", Contemporary Mathematics, vol. 807 (Amer. Math. Soc., Providence, RI, 2024), pp. 131-170.
Colecciones

Excepto si se señala otra cosa, la licencia del ítem se describe como Attribution-NonCommercial-NoDerivatives 4.0 International