Metastable FeMg particles for controlling degradation rate, mechanical properties, and biocompatibility of Poly(l-lactic) acid (PLLA) for orthopedic applications

dc.contributor.authorEstrada, Rafael Guillermo
dc.contributor.authorMultigner, Marta
dc.contributor.authorFagali, Natalia
dc.contributor.authorLozano, Rosa María
dc.contributor.authorMuñoz, Marta
dc.contributor.authorCifuentes, Sandra Carolina
dc.contributor.authorTorres, Belén
dc.contributor.authorLieblich, Marcela
dc.date.accessioned2024-04-04T13:45:24Z
dc.date.available2024-04-04T13:45:24Z
dc.date.issued2023
dc.descriptionFinancial support of Ministry of Science and Innovation of Spain (MICINN) PID2019-104351GB-C21, PCIN-2017-036 (M-ERANet2016:4128, EU-FEDER), PID2021-124341OB-C21 and PID2021-123891OB-I00, are greatly acknowledged. R. E. thanks MICINN for the FPI grant PRE2020-092118. The authors thanks CONICET (External Fellowship of NSF, PIP 2021 11220200100315CO), ANPCyT (PICT 2019-0631, PICT Start Up 2020-0034, PICT 2020–02169), UNLP (11/X900), RTI2018-101506-B-C33 from the Ministerio de Ciencia, Innovación y Universidades (MICIU/FEDER), from Spain. The authors thanks J.A. Jiménez and I. Llorente (XRD), M. Maher and A. Tomás (SEM-EDS), M. Acedo (machining) and the students J. Terreros, A. Cardeña and C. Rodríguez-Castañeda (BM).es
dc.description.abstractPoly(l-lactic) acid (PLLA) is commonly used in bioabsorbable medical implants, but it suffers from slow degradation rate and rapid decline in mechanical properties for orthopedic applications. To address this drawback, recent research has explored the use of Mg as a filler for PLLA, resulting in composites with improved degradation rate and cytocompatibility compared to neat PLLA. In this study, FeMg powder particles were proposed as fillers for PLLA to investigate the potential of PLLA/FeMg composites for bioabsorbable implants. Cylinder specimens of PLLA, PLLA/Fe, PLLA/ Mg and PLLA/FeMg were prepared using solvent casting followed by thermo-molding. The microstructure, thermal behavior, in vitro degradation behavior in simulated body fluid, mechanical properties and cytocompatibility of these composites were examined. The results indicate that the presence of FeMg particles prevents the deterioration of the composite mechanical properties, at least up to 14 days. Once a certain amount of degradation of the composite is reached, the degradation is faster than that of PLLA. Direct cytotoxicity assays revealed that preosteoblast MC3T3-E1 cells successfully adhered to and proliferated on the PLLA/FeMg surface. The inclusion of a low percentage of Mg into the Fe lattice not only accelerated the degradation rate of Fe but also improved its cytocompatibility. The enhanced degradation rate, mechanical properties, and osteoconductive properties of this composite make it a promising option for temporary orthopedic biomedical devices.es
dc.identifier.citationRafael Guillermo Estrada, Marta Multigner, Natalia Fagali, Rosa María Lozano, Marta Muñoz, Sandra Carolina Cifuentes, Belén Torres, Marcela Lieblich, Metastable FeMg particles for controlling degradation rate, mechanical properties, and biocompatibility of Poly(l-lactic) acid (PLLA) for orthopedic applications, Heliyon, Volume 9, Issue 12, 2023, e22552, ISSN 2405-8440, https://doi.org/10.1016/j.heliyon.2023.e22552es
dc.identifier.doi10.1016/j.heliyon.2023.e22552es
dc.identifier.issn2405-8440
dc.identifier.urihttps://hdl.handle.net/10115/31993
dc.language.isoenges
dc.publisherElsevieres
dc.rightsAttribution-NonCommercial-NoDerivatives 4.0 Internacional*
dc.rights.accessRightsinfo:eu-repo/semantics/openAccesses
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/*
dc.subjectPLLAes
dc.subjectFeMges
dc.subjectDegradable composite biomateriales
dc.subjectMechanical properties¸ cytocompatibilityes
dc.subjectTemporary orthopedic deviceses
dc.titleMetastable FeMg particles for controlling degradation rate, mechanical properties, and biocompatibility of Poly(l-lactic) acid (PLLA) for orthopedic applicationses
dc.typeinfo:eu-repo/semantics/articlees

Archivos

Bloque original

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
1-s2.0-S2405844023097608-main.pdf
Tamaño:
6.4 MB
Formato:
Adobe Portable Document Format
Descripción:

Bloque de licencias

Mostrando 1 - 1 de 1
No hay miniatura disponible
Nombre:
license.txt
Tamaño:
2.67 KB
Formato:
Item-specific license agreed upon to submission
Descripción: