Controlling chaotic transients in the Hénon and the Lozi map with the safety function

Fecha

2022-02-12

Título de la revista

ISSN de la revista

Título del volumen

Editor

Taylor & Francis

Enlace externo

Resumen

In this work, we deal with the Hénon and the Lozi map for a choice of parameters where they show transient chaos. Orbits close to the chaotic saddle behave chaotically for a while to eventually escape to an external attractor. Traditionally, to prevent such an escape, the partial control technique has been applied. This method stands out for considering disturbances (noise) affecting the map and for finding a special region of the phase space, called the safe set, where the control required to sustain the orbits is small. However, in this work, we will apply a new approach of the partial control method that has been recently developed. This new approach is based on finding a special function called the safety function which allows to automatically find the minimum control necessary to avoid the escape of the orbits. Furthermore,wewill show the strong connection between the safety function and the classical safe set. To illustrate that, we will compute for the first time, safety functions for the two-dimensional Hénon and Lozi maps, wherewealso show the strong dependence of this function with the magnitude of disturbances affecting the map, and how this change drastically impacts the controlled orbits.

Descripción

This work was supported by the Spanish State Research Agency Agencia Estatal de Investigación (AEI) and the European Regional Development Fund (ERDF) under Project No. PID2019-105554GB-100.

Citación

Capeáns, R., & Sanjuán, M. A. F. (2023). Controlling chaotic transients in the Hénon and the Lozi map with the safety function. Journal of Difference Equations and Applications, 29(9–12), 876–884. https://doi.org/10.1080/10236198.2022.2063050
license logo
Excepto si se señala otra cosa, la licencia del ítem se describe como Attribution-NonCommercial 4.0 International