Generalized and new solutions of the NRT nonlinear Schrödinger equation

dc.contributor.authorGordoa, Pilar R.
dc.contributor.authorPickering, Andrew
dc.contributor.authorPuertas-Centeno, David
dc.contributor.authorToranzo, E. V.
dc.date.accessioned2025-01-15T07:16:27Z
dc.date.available2025-01-15T07:16:27Z
dc.date.issued2024-12-30
dc.description.abstractIn this paper we present new solutions of the non-linear Schrödinger equation proposed by Nobre, Rego-Monteiro and Tsallis for the free particle, obtained from different Lie symmetry reductions. Analytical expressions for the wave function, the auxiliary field and the probability density are derived using a variety of approaches. Solutions involving elliptic functions, Bessel and modified Bessel functions, as well as the inverse error function are found, amongst others. On the other hand, a closed-form expression for the general solution of the traveling wave ansatz (see Bountis and Nobre) is obtained for any real value of the nonlinearity index. This is achieved through the use of the so-called generalized trigonometric functions as defined by Lindqvist and Drábek, the utility of which in analyzing the equation under study is highlighted throughout the paper.
dc.identifier.citationP.R. Gordoa, A. Pickering, D. Puertas-Centeno, E.V. Toranzo, Generalized and new solutions of the NRT nonlinear Schrödinger equation, Physica D: Nonlinear Phenomena, Volume 472, 2025, 134515, ISSN 0167-2789, https://doi.org/10.1016/j.physd.2024.134515
dc.identifier.doi10.1016/j.physd.2024.134515
dc.identifier.issn1872-8022
dc.identifier.urihttps://hdl.handle.net/10115/56137
dc.language.isoen
dc.publisherElsevier
dc.rightsAttribution-NonCommercial-NoDerivatives 4.0 Internationalen
dc.rights.accessRightsinfo:eu-repo/semantics/embargoedAccess
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/
dc.subjectNonlinear Schrödinger equation
dc.subjectSimilarity reductions
dc.subjectExact solutions
dc.titleGeneralized and new solutions of the NRT nonlinear Schrödinger equation
dc.typeArticle

Archivos

Bloque original

Mostrando 1 - 1 de 1
No hay miniatura disponible
Nombre:
2024_Gordoa_Arxiv.pdf
Tamaño:
198.95 KB
Formato:
Adobe Portable Document Format