Equivalence and finite time blow-up of solutions and interfaces for two nonlinear diffusion equations
dc.contributor.author | Hernández-Bermejo, Benito | |
dc.contributor.author | Iagar, Razvan G | |
dc.contributor.author | Gordoa, Pilar R | |
dc.contributor.author | Pickering, Andrew | |
dc.contributor.author | Sánchez, Ariel | |
dc.date.accessioned | 2024-12-02T14:20:58Z | |
dc.date.available | 2024-12-02T14:20:58Z | |
dc.date.issued | 2020 | |
dc.description | B. H.-B. acknowledges Ministerio de Economía, Industria y Competitividad for grants MTM2017-84383-P and MTM2016-80276-P. The work of P. R. G. and A. P. is supported by the Ministry of Economy and Competitiveness of Spain under contract MTM2016-80276-P (AEI/FEDER, EU). The work of A. S. is partially supported by the Spanish project MTM2017-87596-P. | es |
dc.description.abstract | In this work, we construct a transformation between the solutions to the following reaction-convection-diffusion equation u_t = (u^m)_{xx} + a(x)(u^m)_x + b(x)u^m, posed for x ∈ R, t ≥ 0 and m > 1, where a, b are two continuous real functions, and the solutions to the nonhomogeneous diffusion equation of porous medium type f(y)θ_τ = (θ^m)_{yy}, posed in the half-line y ∈ [0, ∞) with τ ≥ 0, m > 1 and suitable density functions f(y). We apply this correspondence to the case of constant coefficients a(x) = 1 and b(x) = K > 0. For this case, we prove that compactly supported solutions to the first equation blow up in finite time, together with their interfaces, as x → −∞. We then establish the large time behavior of solutions to a homogeneous Dirichlet problem associated to the first equation on a bounded interval. We also prove a finite time blow-up of the interfaces for compactly supported solutions to the second equation when f(y) = y^{−γ} with γ > 2. | es |
dc.identifier.citation | J. Math. Anal. Appl. 482 (2020) 123503 | es |
dc.identifier.citation | Benito Hernández-Bermejo, Razvan Gabriel Iagar, Pilar R. Gordoa, Andrew Pickering, Ariel Sánchez, Equivalence and finite time blow-up of solutions and interfaces for two nonlinear diffusion equations, Journal of Mathematical Analysis and Applications, Volume 482, Issue 1, 2020, 123503, ISSN 0022-247X, https://doi.org/10.1016/j.jmaa.2019.123503 | |
dc.identifier.doi | 10.1016/j.jmaa.2019.123503 | es |
dc.identifier.issn | 0022-247X | |
dc.identifier.uri | https://hdl.handle.net/10115/42250 | |
dc.language.iso | eng | es |
dc.publisher | Elsevier | es |
dc.rights | Attribution-NonCommercial-NoDerivatives 4.0 Internacional | * |
dc.rights.accessRights | info:eu-repo/semantics/openAccess | es |
dc.rights.uri | http://creativecommons.org/licenses/by-nc-nd/4.0/ | * |
dc.subject | reaction-convection-diffusion equations | es |
dc.subject | nonhomogeneous equations | es |
dc.subject | finite time blow-up | es |
dc.subject | porous medium equation | es |
dc.subject | correspondence of solutions | es |
dc.title | Equivalence and finite time blow-up of solutions and interfaces for two nonlinear diffusion equations | es |
dc.type | info:eu-repo/semantics/article | es |
Archivos
Bloque original
1 - 1 de 1
Cargando...
- Nombre:
- 2020_J_Math_Anal_Appl.pdf
- Tamaño:
- 347.42 KB
- Formato:
- Adobe Portable Document Format
- Descripción:
Bloque de licencias
1 - 1 de 1
No hay miniatura disponible
- Nombre:
- license.txt
- Tamaño:
- 2.67 KB
- Formato:
- Item-specific license agreed upon to submission
- Descripción: