An extension of Sylvester’s theorem on arithmetic progressions

dc.contributor.authorde Vega Fernández, Francisco Javier
dc.contributor.authorMunagi, Augustine O.
dc.date.accessioned2024-09-03T07:31:12Z
dc.date.available2024-09-03T07:31:12Z
dc.date.issued2023-06-18
dc.descriptionSe generaliza un resultado de Sylvester en el que estudia la descomposición de un número como suma de consecutivos. En este artículo se estudia la descomposición de un número como suma de una serie que forma una progresión aritmética.es
dc.description.abstractSylvester’s theorem states that every number can be decomposed into a sum of consecutive positive integers except powers of 2. In a way, this theorem characterizes the partitions of a number as a sum of consecutive integers. The first generalization we propose of the theorem characterizes the partitions of a number as a sum of arithmetic progressions with positive terms. In addition to synthesizing and rediscovering known results, the method we propose allows us to state a second generalization and characterize the partitions of a number into parts whose differences between consecutive parts form an arithmetic progression. To achieve this, we will analyze the set of divisors in arithmetics that modify the usual definition of the multiplication operation between two integers. As we will see, symmetries arise in the set of divisors based on two parameters: t1, being even or odd, and t2, congruent to 0, 1, or 2 (mod 3). This approach also leads to a unique representation result of the same nature as Sylvester’s theorem, i.e., a power of 3 cannot be represented as a sum of three or more terms of a positive integer sequence such that the differences between consecutive terms are consecutive integers.es
dc.identifier.citationMunagi AO, de Vega FJ. An Extension of Sylvester’s Theorem on Arithmetic Progressions. Symmetry. 2023; 15(6):1276es
dc.identifier.doi10.3390/sym15061276es
dc.identifier.issn2073-8994
dc.identifier.urihttps://hdl.handle.net/10115/39332
dc.language.isoenges
dc.publisherMDPIes
dc.rightsAtribución 4.0 Internacional*
dc.rights.accessRightsinfo:eu-repo/semantics/openAccesses
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/*
dc.subjectSylvester’s theorem; partition; divisor; arithmetic progression; representationes
dc.titleAn extension of Sylvester’s theorem on arithmetic progressionses
dc.typeinfo:eu-repo/semantics/articlees

Archivos

Bloque original

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
symmetry-15-01276-v2.pdf
Tamaño:
323.6 KB
Formato:
Adobe Portable Document Format
Descripción:
Artículo principal