Performance evaluation of a 3D multi-view-based particle filter for visual object tracking using GPUs and multicore CPUs

dc.contributor.authorConcha, David
dc.contributor.authorCabido, Raúl
dc.contributor.authorPantrigo, Juan José
dc.contributor.authorSanz, Antonio
dc.date.accessioned2024-02-10T08:51:31Z
dc.date.available2024-02-10T08:51:31Z
dc.date.issued2018-08-01
dc.description.abstractThis paper presents a deep and extensive performance analysis of the particle filter (PF) algorithm for a very compute intensive 3D multi-view visual tracking problem. We compare different implementations and parameter settings of the PF algorithm in a CPU platform taking advantage of the multithreading capabilities of the modern processors and a graphics processing unit (GPU) platform using NVIDIA CUDA computing environment as developing framework. We extend our experimental study to each individual stage of the PF algorithm, and evaluate the quality versus performance trade-off among different ways to design these stages. We have observed that the GPU platform performs better than the multithreaded CPU platform when handling a large number of particles, but we also demonstrate that hybrid CPU/GPU implementations can run almost as fast as only GPU solutions.es
dc.identifier.citationConcha, D., Cabido, R., Pantrigo, J.J. et al. Performance evaluation of a 3D multi-view-based particle filter for visual object tracking using GPUs and multicore CPUs. J Real-Time Image Proc 15, 309–327 (2018). https://doi.org/10.1007/s11554-014-0483-1es
dc.identifier.doi10.1007/s11554-014-0483-1es
dc.identifier.urihttps://hdl.handle.net/10115/30300
dc.language.isoenges
dc.publisherJournal of Real-Time Image Processinges
dc.rights.accessRightsinfo:eu-repo/semantics/restrictedAccesses
dc.subjectParticle filteringes
dc.subjectGPU Computinges
dc.subjectPerformance evaluationes
dc.subject3D visual trackinges
dc.subjectMulti-viewes
dc.titlePerformance evaluation of a 3D multi-view-based particle filter for visual object tracking using GPUs and multicore CPUses
dc.typeinfo:eu-repo/semantics/articlees

Archivos

Bloque original

Mostrando 1 - 1 de 1
No hay miniatura disponible
Nombre:
3_paper_y_justificacion_Q2.pdf
Tamaño:
2.01 MB
Formato:
Adobe Portable Document Format
Descripción:
Artículo principal