Eternal solutions in exponential self-similar form for a quasilinear reaction-diffusion equation with critical singular potential

dc.contributor.authorIagar, Razvan Gabriel
dc.contributor.authorLatorre, Marta
dc.contributor.authorSánchez, Ariel
dc.date.accessioned2024-04-03T06:50:40Z
dc.date.available2024-04-03T06:50:40Z
dc.date.issued2024
dc.description.abstractWe prove existence and uniqueness of self-similar solutions with exponential form u(x,t)=e^{alpha t}f(|x|e^{-beta t}), alpha, beta>0, to the quasilinear reaction-diffusion equation \partial_t u=Delta u^m+|x|^{sigma}u^p, with m>1, 1<p<m and sigma=-2(p-1)/(m-1). Such self-similar solutions are usually known in the literature as eternal solutions since they exist for any t\in(-\infty,\infty). As an application of the existence of these eternal solutions, we show existence of global in time weak solutions with any initial condition u_0 in L^{\infty}(R^N) and, in particular, that these weak solutions remain compactly supported at any time t>0 if u_0 is compactly supported.es
dc.identifier.citationRazvan Gabriel Iagar, Marta Latorre, Ariel Sánchez. Eternal solutions in exponential self-similar form for a quasilinear reaction-diffusion equation with critical singular potential. Discrete and Continuous Dynamical Systems, 2024, 44(5): 1329-1353. doi: 10.3934/dcds.2023147es
dc.identifier.doi10.3934/dcds.2023147es
dc.identifier.urihttps://hdl.handle.net/10115/31917
dc.language.isoenges
dc.rights.accessRightsinfo:eu-repo/semantics/embargoedAccesses
dc.subjectReaction-diffusion equationses
dc.subjectweighted reactiones
dc.subjectsingular potentiales
dc.subjecteternal solutionses
dc.subjectexponential self-similarityes
dc.subjectglobal solutionses
dc.titleEternal solutions in exponential self-similar form for a quasilinear reaction-diffusion equation with critical singular potentiales
dc.typeinfo:eu-repo/semantics/articlees

Archivos

Bloque original

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
ILS23.pdf
Tamaño:
399.67 KB
Formato:
Adobe Portable Document Format
Descripción:

Bloque de licencias

Mostrando 1 - 1 de 1
No hay miniatura disponible
Nombre:
license.txt
Tamaño:
2.67 KB
Formato:
Item-specific license agreed upon to submission
Descripción: