The ETS2 Dataset, Synthetic Data from Video Games for Monocular Depth Estimation
dc.contributor.author | María-Arribas, David | |
dc.contributor.author | Cuesta-Infante, Alfredo | |
dc.contributor.author | Pantrigo, Juan J. | |
dc.date.accessioned | 2025-07-01T11:27:15Z | |
dc.date.available | 2025-07-01T11:27:15Z | |
dc.date.issued | 2023-06-25 | |
dc.description | This is the author’s version of the manuscript that was accepted for publication in the proceedings of IbPRIA 2023, published in the Lecture Notes in Computer Science (LNCS) series by Springer. The final published version, including copyediting and typesetting by Springer, is available at: https://link.springer.com/chapter/10.1007/978-3-031-36616-1_30 | |
dc.description.abstract | In this work, we present a new dataset for monocular depth estimation created by extracting images, dense depth maps, and odometer data from a realistic video game simulation, Euro Truck Simulator 2. The dataset is used to train state-of-the-art depth estimation models in both supervised and unsupervised ways, which are evaluated against real-world sequences. Our results demonstrate that models trained exclusively with synthetic data achieve satisfactory performance in the real domain. The quantitative evaluation brings light to possible causes of domain gap in monocular depth estimation. Specifically, we discuss the effects of coarse-grained ground-truth depth maps in contrast to the fine-grained depth estimation. The dataset and code for data extraction and experiments are released open-source. | |
dc.identifier.citation | María-Arribas, D., Cuesta-Infante, A., Pantrigo, J.J. (2023). The ETS2 Dataset, Synthetic Data from Video Games for Monocular Depth Estimation. In: Pertusa, A., Gallego, A.J., Sánchez, J.A., Domingues, I. (eds) Pattern Recognition and Image Analysis. IbPRIA 2023. Lecture Notes in Computer Science, vol 14062. Springer, Cham. https://doi.org/10.1007/978-3-031-36616-1_30 | |
dc.identifier.doi | https://link.springer.com/chapter/10.1007/978-3-031-36616-1_30 | |
dc.identifier.isbn | 978-3-031-36616-1 | |
dc.identifier.isbn | 978-3-031-36615-4 | |
dc.identifier.uri | https://hdl.handle.net/10115/90437 | |
dc.language.iso | en | |
dc.publisher | Springer Nature | |
dc.rights | Attribution-NonCommercial-ShareAlike 4.0 International | en |
dc.rights.accessRights | info:eu-repo/semantics/closedAccess | |
dc.rights.uri | http://creativecommons.org/licenses/by-nc-sa/4.0/ | |
dc.subject | synthetic dataset | |
dc.subject | depth estimation | |
dc.subject | video games | |
dc.subject | simulation | |
dc.subject | domain gap | |
dc.title | The ETS2 Dataset, Synthetic Data from Video Games for Monocular Depth Estimation | |
dc.type | Book chapter |
Archivos
Bloque original
1 - 1 de 1
No hay miniatura disponible
- Nombre:
- ibpria_2023_ets2_dataset_FINAL.pdf
- Tamaño:
- 4.9 MB
- Formato:
- Adobe Portable Document Format