The ETS2 Dataset, Synthetic Data from Video Games for Monocular Depth Estimation

dc.contributor.authorMaría-Arribas, David
dc.contributor.authorCuesta-Infante, Alfredo
dc.contributor.authorPantrigo, Juan J.
dc.date.accessioned2025-07-01T11:27:15Z
dc.date.available2025-07-01T11:27:15Z
dc.date.issued2023-06-25
dc.descriptionThis is the author’s version of the manuscript that was accepted for publication in the proceedings of IbPRIA 2023, published in the Lecture Notes in Computer Science (LNCS) series by Springer. The final published version, including copyediting and typesetting by Springer, is available at: https://link.springer.com/chapter/10.1007/978-3-031-36616-1_30
dc.description.abstractIn this work, we present a new dataset for monocular depth estimation created by extracting images, dense depth maps, and odometer data from a realistic video game simulation, Euro Truck Simulator 2. The dataset is used to train state-of-the-art depth estimation models in both supervised and unsupervised ways, which are evaluated against real-world sequences. Our results demonstrate that models trained exclusively with synthetic data achieve satisfactory performance in the real domain. The quantitative evaluation brings light to possible causes of domain gap in monocular depth estimation. Specifically, we discuss the effects of coarse-grained ground-truth depth maps in contrast to the fine-grained depth estimation. The dataset and code for data extraction and experiments are released open-source.
dc.identifier.citationMaría-Arribas, D., Cuesta-Infante, A., Pantrigo, J.J. (2023). The ETS2 Dataset, Synthetic Data from Video Games for Monocular Depth Estimation. In: Pertusa, A., Gallego, A.J., Sánchez, J.A., Domingues, I. (eds) Pattern Recognition and Image Analysis. IbPRIA 2023. Lecture Notes in Computer Science, vol 14062. Springer, Cham. https://doi.org/10.1007/978-3-031-36616-1_30
dc.identifier.doihttps://link.springer.com/chapter/10.1007/978-3-031-36616-1_30
dc.identifier.isbn978-3-031-36616-1
dc.identifier.isbn978-3-031-36615-4
dc.identifier.urihttps://hdl.handle.net/10115/90437
dc.language.isoen
dc.publisherSpringer Nature
dc.rightsAttribution-NonCommercial-ShareAlike 4.0 Internationalen
dc.rights.accessRightsinfo:eu-repo/semantics/closedAccess
dc.rights.urihttp://creativecommons.org/licenses/by-nc-sa/4.0/
dc.subjectsynthetic dataset
dc.subjectdepth estimation
dc.subjectvideo games
dc.subjectsimulation
dc.subjectdomain gap
dc.titleThe ETS2 Dataset, Synthetic Data from Video Games for Monocular Depth Estimation
dc.typeBook chapter

Archivos

Bloque original

Mostrando 1 - 1 de 1
No hay miniatura disponible
Nombre:
ibpria_2023_ets2_dataset_FINAL.pdf
Tamaño:
4.9 MB
Formato:
Adobe Portable Document Format