Application of AI for short-term pv generation forecast

dc.contributor.authorRocha, Helder R. O.
dc.contributor.authorFiorotti, Rodrigo
dc.contributor.authorFardin, Jussara F.
dc.contributor.authorGarcia-Pereira, Hilel
dc.contributor.authorBouvier, Yann E.
dc.contributor.authorRodriguez-Lorente, Alba
dc.contributor.authorYahyaoui, Imene
dc.date.accessioned2024-12-04T15:35:51Z
dc.date.available2024-12-04T15:35:51Z
dc.date.issued2023-12-23
dc.descriptionThe authors acknowledge the support of LabTel-UFES and NiDA. Moreover, the authors would like to thank the Technological Center Support (CAT) of the University Rey Juan Carlos and the research chair Smart e2 (URJC) for their support for this research paper.es
dc.description.abstractThe efficient use of the photovoltaic power requires a good estimation of the PV generation. That is why the use of good techniques for forecast is necessary. In this research paper, Long ShortTerm Memory, Bidirectional Long Short-Term Memory and the Temporal convolutional network are studied in depth to forecast the photovoltaic power, voltage and efficiency of a 1320 Wp amorphous plant installed in the Technology Support Centre in the University Rey Juan Carlos, Madrid (Spain). The accuracy of these techniques are compared using experimental data along one year, applying 1 timestep or 15 min and 96 step times or 24 h, showing that TCN exhibits outstanding performance, compared with the two other techniques. For instance, it presents better results in all forecast variables and both forecast horizons, achieving an overall Mean Squared Error (MSE) of 0.0024 for 15 min forecasts and 0.0058 for 24 h forecasts. In addition, the sensitivity analyses for the TCN technique is performed and shows that the accuracy is reduced as the forecast horizon increases and that the 6 months of dataset is sufficient to obtain an adequate result with an MSE value of 0.0080 and a coefficient of determination of 0.90 in the worst scenarios (24 h of forecast).es
dc.identifier.citationRocha, H.R.O.; Fiorotti, R.; Fardin, J.F.; Garcia-Pereira, H.; Bouvier, Y.E.; Rodríguez-Lorente, A.; Yahyaoui, I. Application of AI for Short-Term PV Generation Forecast. Sensors 2024, 24, 85. https://doi.org/10.3390/s24010085es
dc.identifier.doi10.3390/s24010085es
dc.identifier.issn1424-8220
dc.identifier.urihttps://hdl.handle.net/10115/42317
dc.language.isoenges
dc.publisherMDPIes
dc.rightsAtribución 4.0 Internacional*
dc.rights.accessRightsinfo:eu-repo/semantics/openAccesses
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/*
dc.subjectphotovoltaic poweres
dc.subjectshort-term forecastes
dc.subjectartificial intelligencees
dc.subjectLSTMes
dc.subjectBILSTMes
dc.subjectTCNes
dc.titleApplication of AI for short-term pv generation forecastes
dc.typeinfo:eu-repo/semantics/articlees

Archivos

Bloque original

Mostrando 1 - 1 de 1
No hay miniatura disponible
Nombre:
sensors-24-00085-v2 (2).pdf
Tamaño:
2.59 MB
Formato:
Adobe Portable Document Format
Descripción:
Articulo principal

Bloque de licencias

Mostrando 1 - 1 de 1
No hay miniatura disponible
Nombre:
license.txt
Tamaño:
2.67 KB
Formato:
Item-specific license agreed upon to submission
Descripción: