Fast incremental learning by transfer learning and hierarchical sequencing
dc.contributor.author | Llopis-Ibor, L. | |
dc.contributor.author | Beltrán-Royo, César | |
dc.contributor.author | Cuesta-Infante, A. | |
dc.contributor.author | Pantrigo, J.J. | |
dc.date.accessioned | 2024-09-16T10:01:18Z | |
dc.date.available | 2024-09-16T10:01:18Z | |
dc.date.issued | 2023-02 | |
dc.description.abstract | In this paper we address the Class Incremental Learning (CIL) problem, characterized by sequences of data batches in which examples of different classes occur at different times. From a theoretical point of view, we propose a new approach that we call hierarchical sequencing and prove that any CIL task can be sequenced into simple incremental classification tasks by means of the hierarchical sequencing. From a practical point of view, we propose the HILAND method for image classification, which combines the hierarchical sequencing with transfer learning. In our experiments, the HILAND method has obtained state-of-the-art results for the CIL problem, but with far less training effort through transfer learning | es |
dc.identifier.citation | Laura Llopis-Ibor, Cesar Beltran-Royo, Alfredo Cuesta-Infante, Juan J. Pantrigo, Fast incremental learning by transfer learning and hierarchical sequencing, Expert Systems with Applications, Volume 212, 2023, 118580, ISSN 0957-4174, https://doi.org/10.1016/j.eswa.2022.118580 | es |
dc.identifier.doi | 10.1016/j.eswa.2022.118580 | es |
dc.identifier.uri | https://hdl.handle.net/10115/39553 | |
dc.language.iso | eng | es |
dc.publisher | Elsevier | es |
dc.rights | Attribution-NonCommercial-NoDerivs 4.0 International | |
dc.rights.accessRights | info:eu-repo/semantics/embargoedAccess | es |
dc.rights.uri | https://creativecommons.org/licenses/by-nc-nd/4.0/ | |
dc.title | Fast incremental learning by transfer learning and hierarchical sequencing | es |
dc.type | info:eu-repo/semantics/article | es |
Archivos
Bloque original
1 - 1 de 1
Cargando...
- Nombre:
- 23HILAND_ESWA.pdf
- Tamaño:
- 579.65 KB
- Formato:
- Adobe Portable Document Format
- Descripción: