Fast incremental learning by transfer learning and hierarchical sequencing

dc.contributor.authorLlopis-Ibor, L.
dc.contributor.authorBeltrán-Royo, César
dc.contributor.authorCuesta-Infante, A.
dc.contributor.authorPantrigo, J.J.
dc.date.accessioned2024-09-16T10:01:18Z
dc.date.available2024-09-16T10:01:18Z
dc.date.issued2023-02
dc.description.abstractIn this paper we address the Class Incremental Learning (CIL) problem, characterized by sequences of data batches in which examples of different classes occur at different times. From a theoretical point of view, we propose a new approach that we call hierarchical sequencing and prove that any CIL task can be sequenced into simple incremental classification tasks by means of the hierarchical sequencing. From a practical point of view, we propose the HILAND method for image classification, which combines the hierarchical sequencing with transfer learning. In our experiments, the HILAND method has obtained state-of-the-art results for the CIL problem, but with far less training effort through transfer learninges
dc.identifier.citationLaura Llopis-Ibor, Cesar Beltran-Royo, Alfredo Cuesta-Infante, Juan J. Pantrigo, Fast incremental learning by transfer learning and hierarchical sequencing, Expert Systems with Applications, Volume 212, 2023, 118580, ISSN 0957-4174, https://doi.org/10.1016/j.eswa.2022.118580es
dc.identifier.doi10.1016/j.eswa.2022.118580es
dc.identifier.urihttps://hdl.handle.net/10115/39553
dc.language.isoenges
dc.publisherElsevieres
dc.rightsAttribution-NonCommercial-NoDerivs 4.0 International
dc.rights.accessRightsinfo:eu-repo/semantics/embargoedAccesses
dc.rights.urihttps://creativecommons.org/licenses/by-nc-nd/4.0/
dc.titleFast incremental learning by transfer learning and hierarchical sequencinges
dc.typeinfo:eu-repo/semantics/articlees

Archivos

Bloque original

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
23HILAND_ESWA.pdf
Tamaño:
579.65 KB
Formato:
Adobe Portable Document Format
Descripción: