Interactive Visual Clustering and Classification based on Dimensionality Reduction Mappings: A Case Study for Analyzing Patients with Dermatologic Conditions

dc.contributor.authorMohedano-Munoz, Miguel Ángel
dc.contributor.authorAlique-García, Sergio
dc.contributor.authorRubio-Sánchez, Manuel
dc.contributor.authorRaya, Laura
dc.contributor.authorSanchez, Alberto
dc.date.accessioned2024-01-16T09:59:55Z
dc.date.available2024-01-16T09:59:55Z
dc.date.issued2021-06-01
dc.descriptionThis work has been supported by the Spanish Ministry of Science, Innovation and Universities (grant RTI2018-098694-B-I00). The authors would like to thank Diego Rojo for constructive criticism of the manuscript.es
dc.description.abstractMultidimensional data sets are becoming more frequent in practically all research fields, and require complex data analysis techniques in order to extract knowledge from them. In this paper, we propose an interactive visualization tool for performing exploratory data analysis. The tool combines unsupervised and supervised dimensionality reduction methods, such as linear discriminant analysis, or t-SNE, with clustering and classification techniques. Analysts can use several machine learning methods for extracting data structure, and can group data into clusters interactively or through clustering algorithms. In addition they can visualize projections of the data to evaluate the quality of obtained clusters, and to analyze the performance of classification methods. We have applied this tool to analyze a clinical data set related to patients with dermatologic conditions that are under photodynamic therapy. The analysis allowed medical doctors to identify several clinically interesting patient groups. In addition, clinicians discovered a greater efficacy in the treatment of patients with the photosensitizer 5-aminolaevulinic acid nanoemulsion gel compared to those treated with methyl-5-aminolaevulinate cream.es
dc.identifier.citationMohedano-Munoz, M. A., Alique-García, S., Rubio-Sánchez, M., Raya, L., & Sanchez, A. (2021). Interactive Visual Clustering and Classification Based on Dimensionality Reduction Mappings: A case study for analyzing patients with dermatologic conditions. Expert Systems with Applications, 171, 114605.es
dc.identifier.doi10.1016/j.eswa.2021.114605es
dc.identifier.issn0957-4174
dc.identifier.urihttps://hdl.handle.net/10115/28478
dc.language.isoenges
dc.rightsAttribution-NonCommercial-NoDerivatives 4.0 Internacional*
dc.rights.accessRightsinfo:eu-repo/semantics/embargoedAccesses
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/*
dc.subjectDimensionality reductiones
dc.subjectClusteringes
dc.subjectClassificationes
dc.subjectVisual analyticses
dc.subjectDermatologyes
dc.subjectPhotodynamic therapyes
dc.titleInteractive Visual Clustering and Classification based on Dimensionality Reduction Mappings: A Case Study for Analyzing Patients with Dermatologic Conditionses
dc.typeinfo:eu-repo/semantics/articlees

Archivos

Bloque original

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
ESWA_2021_Dermatologic_Conditions_Version_aceptada.pdf
Tamaño:
1.2 MB
Formato:
Adobe Portable Document Format
Descripción:
Artículo principal

Bloque de licencias

Mostrando 1 - 1 de 1
No hay miniatura disponible
Nombre:
license.txt
Tamaño:
2.67 KB
Formato:
Item-specific license agreed upon to submission
Descripción: