Convolutional neural networks for computer vision-based detection and recognition of dumpsters

dc.contributor.authorRamírez Díaz, Iván
dc.contributor.authorCuesta Infante, Alfredo
dc.contributor.authorPantrigo Fernández, Juan José
dc.contributor.authorSanz Montemayor, Antonio
dc.contributor.authorMoreno, José Luis
dc.contributor.authorAlonso, Valvanera
dc.contributor.authorAnguita, Gema
dc.contributor.authorPalombarani, Luciano
dc.date.accessioned2025-01-24T07:53:37Z
dc.date.available2025-01-24T07:53:37Z
dc.date.issued2020
dc.description.abstractIn this paper, we propose a twofold methodology for visual detection and recognition of different types of city dumpsters, with minimal human labeling of the image data set. Firstly, we carry out transfer learning by using Google Inception-v3 convolutional neural network, which is retrained with only a small subset of labeled images out of the whole data set. This first classifier is then improved with a semi-supervised learning based on retraining for two more rounds, each one increasing the number of labeled images but without human supervision. We compare our approach against both to a baseline case, with no incremental retraining, and the best case, assuming we had a fully labeled data set. We use a data set of 27,624 labeled images of dumpsters provided by Ecoembes, a Spanish nonprofit organization that cares for the environment through recycling and the eco-design of packaging in Spain. Such a data set presents a number of challenges. As in other outdoor visual tasks, there are occluding objects such as vehicles, pedestrians and street furniture, as well as other dumpsters whenever they are placed in groups. In addition, dumpsters have different degrees of deterioration which may affect their shape and color. Finally, 35% of the images are classified according to the capacity of the container, which contains a feature which is hard to assess in a snapshot. Since the data set is fully labeled, we can compare our approach both against a baseline case, doing only the transfer learning using a minimal set of labeled images, and against the best case, using all the labels. The experiments show that the proposed system provides an accuracy of 88%, whereas in the best case it is 93%. In other words, the method proposed attains 94% of the best performance.
dc.identifier.citationRamirez, I., Cuesta-Infante, A., Pantrigo, J. J., Montemayor, A. S., Moreno, J. L., Alonso, V., ... & Palombarani, L. (2020). Convolutional neural networks for computer vision-based detection and recognition of dumpsters. Neural Computing and Applications, 32(17), 13203-13211.
dc.identifier.doihttps://doi.org/10.1007/s00521-018-3390-8
dc.identifier.issn0941-0643
dc.identifier.urihttps://hdl.handle.net/10115/62303
dc.language.isoen
dc.publisherNeural Computing and Applications
dc.rights.accessRightsinfo:eu-repo/semantics/closedAccess
dc.subjectDeep learning Dumpsters
dc.subjectSemi-supervised learning
dc.subjectTransfer learning
dc.titleConvolutional neural networks for computer vision-based detection and recognition of dumpsters
dc.typeArticle

Archivos

Bloque original

Mostrando 1 - 1 de 1
No hay miniatura disponible
Nombre:
dumpsters_paper.pdf
Tamaño:
2.11 MB
Formato:
Adobe Portable Document Format