Microhardness and wear behavior of nanodiamond-reinforced nanocomposites for dental applications

dc.contributor.authorMoriche, Rocío
dc.contributor.authorArtigas-Arnaudas, Joaquín
dc.contributor.authorChetwani, Bhanu
dc.contributor.authorSánchez, María
dc.contributor.authorCampo, Mónica
dc.contributor.authorProlongo, Margarita G.
dc.contributor.authorRams, Joaquín
dc.contributor.authorProlongo, Silvia G.
dc.contributor.authorUreña, Alejandro
dc.date.accessioned2024-10-18T10:27:11Z
dc.date.available2024-10-18T10:27:11Z
dc.date.issued2024-10-04
dc.description.abstractIn polymer-based dental composites, wear is a three-body wear system mainly abrasive, because of the food particles and wear products suspended in the oral cavity, which are transferred to the microcavities of the surface of the replacements. Due to this fact, the incorporation of nanodiamond as reinforcement in these polymer–matrix composites, which promotes the creation of a solid lubricant tribofilm surface could be advantageous. With the reinforcement of nanodiamonds, BisGMA/TEGDMA-based composites increase their microhardness by 95%–420%. A maximum hardness exceeding 65 HV is achieved with a reinforcement of 3.2 wt%. The specific wear rate of neat BisGMA/TEGDMA is near 10−4 mm3/Nm and the Archard's coefficient is 2.6 × 105. The incorporation of a content of 1.6 wt% ND is enough to cause a diminution of ~78% in the friction coefficient and a reduction of the specific wear rate and Archard's coefficient of ~50%. Nevertheless, the addition of relatively high contents reduces the effectiveness of photoinitiation and photocuring, which is related to the scattering and absorption of light radiation by ND. This causes a significant decline in elastic properties starting at 50 μm from the surface. Highlights Photocuring polymer resin was successfully reinforced with nanodiamonds. Microhardness increases from 95% up to 420%, close to commercial composites. Friction coefficient and wear rate are reduced with 1.6 wt% nanodiamonds. High levels of reinforcement reduce the effectiveness of photocuring.es
dc.identifier.citationMoriche R, Artigas-Arnaudas J, Chetwani B, et al. Microhardness and wear behavior of nanodiamond-reinforced nanocomposites for dental applications. Polym Compos. 2024; 1-12. doi:10.1002/pc.29104es
dc.identifier.doi10.1002/pc.29104es
dc.identifier.issn1548-0569 (online)
dc.identifier.issn0272-8397 (print)
dc.identifier.urihttps://hdl.handle.net/10115/40356
dc.language.isoenges
dc.publisherWileyes
dc.rightsAtribución-NoComercial 4.0 Internacional*
dc.rights.accessRightsinfo:eu-repo/semantics/openAccesses
dc.rights.urihttp://creativecommons.org/licenses/by-nc/4.0/*
dc.titleMicrohardness and wear behavior of nanodiamond-reinforced nanocomposites for dental applicationses
dc.typeinfo:eu-repo/semantics/articlees

Archivos

Bloque original

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
Polymer Composites - 2024 - Moriche - Microhardness and wear behavior of nanodiamond‐reinforced nanocomposites for dental.pdf
Tamaño:
2.93 MB
Formato:
Adobe Portable Document Format
Descripción: