Novel Bäcklund Transformations for Integrable Equations

dc.contributor.authorGordoa, Pilar R
dc.contributor.authorPickering, Andrew
dc.date.accessioned2024-12-02T15:24:16Z
dc.date.available2024-12-02T15:24:16Z
dc.date.issued2022
dc.descriptionThe research in this paper was funded by the Ministry of Science and Innovation of Spain under contract PID2020-115273GB-100 (AEI/FEDER, EU).es
dc.description.abstractIn this paper, we construct a new matrix partial differential equation having a structure and properties which mirror those of a matrix fourth Painlevé equation recently derived by the current authors. In particular, we show that this matrix equation admits an auto-Bäcklund transformation analogous to that of this matrix fourth Painlevé equation. Such auto-Bäcklund transformations, in appearance similar to those for Painlevé equations, are quite novel, having been little studied in the case of partial differential equations. Our work here shows the importance of the underlying structure of differential equations, whether ordinary or partial, in the derivation of such results. The starting point for the results in this paper is the construction of a new completely integrable equation, namely, an inverse matrix dispersive water wave equation.es
dc.identifier.citationGordoa, P.R.; Pickering, A. Novel Bäcklund Transformations for Integrable Equations. Mathematics 2022, 10, 3565. https://doi.org/10.3390/math10193565es
dc.identifier.doi10.3390/math10193565es
dc.identifier.issn2227-7390
dc.identifier.urihttps://hdl.handle.net/10115/42255
dc.language.isoenges
dc.publisherMDPIes
dc.rightsAtribución 4.0 Internacional*
dc.rights.accessRightsinfo:eu-repo/semantics/openAccesses
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/*
dc.subjectintegrable equationses
dc.subjectBäcklund transformationses
dc.subjectMiura mapses
dc.subjectinverse matrix dispersive water wave equationes
dc.titleNovel Bäcklund Transformations for Integrable Equationses
dc.typeinfo:eu-repo/semantics/articlees

Archivos

Bloque original

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
mathematics-10-03565-v2.pdf
Tamaño:
254.13 KB
Formato:
Adobe Portable Document Format
Descripción:

Bloque de licencias

Mostrando 1 - 1 de 1
No hay miniatura disponible
Nombre:
license.txt
Tamaño:
2.67 KB
Formato:
Item-specific license agreed upon to submission
Descripción: