Elliptic equations involving the 1-Laplacian and a total variation term with L^{N,\infty}-data

dc.contributor.authorLatorre, Marta
dc.contributor.authorSegura de León, Sergio
dc.date.accessioned2024-04-03T06:18:05Z
dc.date.available2024-04-03T06:18:05Z
dc.date.issued2017
dc.description.abstractIn this paper we study, in an open bounded set with Lipschitz boundary, the Dirichlet problem for a nonlinear singular elliptic equation involving the 1--Laplacian and a total variation term, that is, the inhomogeneous case of the equation appearing in the level set formulation of the inverse mean curvature flow. Our aim is twofold. On the one hand, we consider data belonging to the Marcinkiewicz space with a critical exponent, which leads to unbounded solutions. So, we have to begin introducing the suitable notion of unbounded solution to this problem. Moreover, examples of explicit solutions are shown. On the other hand, this equation allows us to deal with many related problems having a different gradient term which depend on a function g. It is known that the total variation term induces a regularizing effect on existence, uniqueness and regularity. We focus on analyzing whether those features remain true when general gradient terms are taken. Roughly speaking, the bigger g, the better the properties of the solution.es
dc.identifier.citationMarta Latorre, Sergio Segura de León, Elliptic equations involving the 1-Laplacian and a total variation term with L^{N,\infty}-data. Atti Accad. Naz. Lincei Cl. Sci. Fis. Mat. Natur. 28 (2017), no. 4, pp. 817–859es
dc.identifier.doi10.4171/RLM/787es
dc.identifier.issn1120-6330
dc.identifier.urihttps://hdl.handle.net/10115/31912
dc.language.isoenges
dc.rights.accessRightsinfo:eu-repo/semantics/openAccesses
dc.subject1-Laplacianes
dc.subjecttotal variationes
dc.subjectunbounded solutionses
dc.subjectinverse mean curvature flowes
dc.titleElliptic equations involving the 1-Laplacian and a total variation term with L^{N,\infty}-dataes
dc.typeinfo:eu-repo/semantics/articlees

Archivos

Bloque original

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
LS1.pdf
Tamaño:
437.39 KB
Formato:
Adobe Portable Document Format
Descripción:

Bloque de licencias

Mostrando 1 - 1 de 1
No hay miniatura disponible
Nombre:
license.txt
Tamaño:
2.67 KB
Formato:
Item-specific license agreed upon to submission
Descripción: