On the dynamics of the combinatorial model of the real line

dc.contributor.authorChocano, Pedro J.
dc.date.accessioned2023-12-19T09:36:05Z
dc.date.available2023-12-19T09:36:05Z
dc.date.issued2023-04-09
dc.description.abstractWe study dynamical systems defined on the combinatorial model of the real line. We prove that using single-valued maps there are no periodic points of period 3, which contrasts with the classical and less restrictive setting. Then, we use Vietoris-like multivalued maps to show that there is more flexibility, at least in terms of periods, in this combinatorial framework than in the usual one because we do not have the conditions about the existence of periods given by the Sharkovski Theorem.es
dc.identifier.citationPedro J. Chocano. On the dynamics of the combinatorial model of the real line. Dynamical Systems, 38 (3), 395-404, 2023es
dc.identifier.doi10.1080/14689367.2023.2193677es
dc.identifier.urihttps://hdl.handle.net/10115/27443
dc.language.isoenges
dc.publisherTaylor and Francises
dc.rightsAtribución-NoComercial-SinDerivadas 4.0 Internacional
dc.rights.accessRightsinfo:eu-repo/semantics/embargoedAccesses
dc.rights.urihttps://creativecommons.org/licenses/by-nc-nd/4.0/
dc.subjectPosetses
dc.subjectdynamical systemses
dc.subjectperiodic pointses
dc.subjectcombinatorial model real linees
dc.titleOn the dynamics of the combinatorial model of the real linees
dc.typeinfo:eu-repo/semantics/articlees

Archivos

Bloque original

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
DynamicRealLine.pdf
Tamaño:
325.38 KB
Formato:
Adobe Portable Document Format
Descripción:
Artículo principal

Bloque de licencias

Mostrando 1 - 1 de 1
No hay miniatura disponible
Nombre:
license.txt
Tamaño:
2.67 KB
Formato:
Item-specific license agreed upon to submission
Descripción: